• 제목/요약/키워드: Transmission Loss Maximization

Search Result 10, Processing Time 0.033 seconds

Optimal sequencing of 1D acoustic system for sound transmission loss maximization using topology optimization method (전달손실 최대화를 위한 위상최적화기반 1차원 흡차음시스템의 최적 배열 설계)

  • Kim, Eun-Il;Lee, Joong-Seok;Kim, Yoon-Young;Kim, Jung-Soo;Kang, Yeon-June
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.309-314
    • /
    • 2007
  • Optimal layer sequencing of a multi-layered acoustical foam is solved to maximize its sound transmission loss. A foam consisting of air and poroelastic layers can be optimized when a limited amount of a poroelastic material is allowed. By formulating the sound transmission loss maximization problem as a one dimensional topology optimization problem, optimal layer sequencing and thickness were systematically found for several frequencies. For optimization, the transmission losses of air and poroelastic layers were calculated by the transfer matrix derived from Biot's theory. By interpolating five intrinsic parameters among several poroelastic material parameters, dear air-poroelastic layer distributions were obtained; no filtering or post-processing was necessary. The optimized foam layouts by the proposed method were shown to differ depending on the frequency of interest.

  • PDF

One-dimensional Topology Optimization for Transmission Loss Maximization of Multi-layered Acoustic Foams (전달손실 최대화를 위한 공기-흡음재 배열 최적설계)

  • Lee, Joong-Seok;Kim, Yoon-Young;Kim, Jung-Soo;Kang, Yeon-June;Kim, Eun-Il
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.938-941
    • /
    • 2006
  • We present a new design method of one-dimensional multi-layered acoustic foams for transmission loss maximization by topology optimization. Multi-layered acoustic foam sequences consisting of acoustic air layers and poroelastic material layers are designed for target frequency values. For successful topology optimization design of multi-layered acoustic foams, the material interpolation concept of topology optimization is adopted. In doing so, an acoustic air layer is modeled as a limiting poroelastic material layer; acoustic air and poroelastic material are handled by a single set of governing equations based on Biot's theory. For efficient analysis of a specific multi-layered foam appearing during optimization, we do not solve the differential equations directly, but we use an efficient transfer matrix approach which can be derived from Biot's theory. Through some numerical case studies, the proposed design method for finding optimal multi-layer sequencing is validated.

  • PDF

Sound Transmission Loss Maximization of Multi-panel Structures Lined with Poroelastic Materials by Topology Optimization (전달손실 최대화를 위한 흡음재-패널 배열 최적설계)

  • Kim, Yong-Jin;Lee, Joong-Seok;Kang, Yeon-June;Kim, Yoon-Young
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.728-733
    • /
    • 2008
  • Though multi-panel structures lined with a poroelastic material have been widely used to reduce sound transmission in various fields, most of the previous works to design them were conducted by repeated analyses or experiments based on initially given configurations or sequences. Therefore, it was difficult to obtain the optimal sequence of multi-panel structures lined with a poroelastic material yielding superior sound isolation capability. In this work, we propose a new design method to sequence a multi-panel structure lined with a poroelastic material having maximized sound transmission loss. Being formulated as a one-dimensional topology optimization problem for a given target frequency, the optimal sequencing of panel-poroelastic layers is systematically carried out in an iterative manner. In this method, a panel layer is expressed as a limiting case of a poroelastic layer to facilitate the optimization process. This means that main material properties of a poroelastic material are treated as Interpolated functions of design variables. The designed sequences of panel-poroelastic layers were shown to be significantly affected by the target frequencies; more panel layers were used at higher target frequencies. The sound transmission loss of the system was calculated by the transfer matrix derived from Biot's theory.

  • PDF

Optimization of Multilayered Foam-panel Sequence for Sound Transmission Loss Maximization (전달손실 최대화를 위한 다층 흡음재-패널 배열 최적설계)

  • Kim, Yong-Jin;Lee, Joong-Seok;Kang, Yeon-June;Kim, Yoon-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.12
    • /
    • pp.1262-1269
    • /
    • 2008
  • Though multilayered foam-panel structures have been widely used to reduce sound transmission in various fields, most of the previous works to design them were conducted by repeated analyses or experiments based on initially given configurations or sequences. Therefore, it was difficult to obtain an optimal sequence of multilayered foam-panel structure yielding superior sound isolation capability. In this work, we propose a new design method to sequence a multi-panel structure lined with a poroelastic material having maximized sound transmission loss. Being formulated as a one-dimensional topology optimization problem fur a given target frequency, the optimal sequencing of panel-poroelastic layers is systematically carried out in an iterative manner. In this method, a panel layer is expressed as a limiting case of a poroelastic layer to facilitate the optimization process. This means that main material properties of a poroelastic material are treated as interpolated functions of design variable. The designed sequences of panel-poroelastic multilayer were shown to be significantly affected by the target frequencies; more panels were obtained at higher target frequency. The sound transmission loss of the system was calculated by the transfer matrix derived from Biot's theory.

An Optimal Power-Throughput Tradeoff Study for MIMO Fading Ad-Hoc Networks

  • Yousefi'zadeh, Homayoun;Jafarkhani, Hamid
    • Journal of Communications and Networks
    • /
    • v.12 no.4
    • /
    • pp.334-345
    • /
    • 2010
  • In this paper, we study optimal tradeoffs of achievable throughput versus consumed power in wireless ad-hoc networks formed by a collection of multiple antenna nodes. Relying on adaptive modulation and/or dynamic channel coding rate allocation techniques for multiple antenna systems, we examine the maximization of throughput under power constraints as well as the minimization of transmission power under throughput constraints. In our examination, we also consider the impacts of enforcing quality of service requirements expressed in the form of channel coding block loss constraints. In order to properly model temporally correlated loss observed in fading wireless channels, we propose the use of finite-state Markov chains. Details of fading statistics of signal-to-interference-noise ratio, an important indicator of transmission quality, are presented. Further, we objectively inspect complexity versus accuracy tradeoff of solving our proposed optimization problems at a global as oppose to a local topology level. Our numerical simulations profile and compare the performance of a variety of scenarios for a number of sample network topologies.

Sparsity Adaptive Expectation Maximization Algorithm for Estimating Channels in MIMO Cooperation systems

  • Zhang, Aihua;Yang, Shouyi;Li, Jianjun;Li, Chunlei;Liu, Zhoufeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.8
    • /
    • pp.3498-3511
    • /
    • 2016
  • We investigate the channel state information (CSI) in multi-input multi-output (MIMO) cooperative networks that employ the amplify-and-forward transmission scheme. Least squares and expectation conditional maximization have been proposed in the system. However, neither of these two approaches takes advantage of channel sparsity, and they cause estimation performance loss. Unlike linear channel estimation methods, several compressed channel estimation methods are proposed in this study to exploit the sparsity of the MIMO cooperative channels based on the theory of compressed sensing. First, the channel estimation problem is formulated as a compressed sensing problem by using sparse decomposition theory. Second, the lower bound is derived for the estimation, and the MIMO relay channel is reconstructed via compressive sampling matching pursuit algorithms. Finally, based on this model, we propose a novel algorithm so called sparsity adaptive expectation maximization (SAEM) by using Kalman filter and expectation maximization algorithm so that it can exploit channel sparsity alternatively and also track the true support set of time-varying channel. Kalman filter is used to provide soft information of transmitted signals to the EM-based algorithm. Various numerical simulation results indicate that the proposed sparse channel estimation technique outperforms the previous estimation schemes.

A Study on the Voltage Stability Enhancement in Radial Power System (방사상 전력계통의 전압안정도 향상에 관한 연구)

  • Kim, Byung-Seop;Jeong, Yun-Won;Park, Jong-Bae;Shin, Joong-Rin;Chae, Myung-Suk
    • Proceedings of the KIEE Conference
    • /
    • 2002.07a
    • /
    • pp.87-89
    • /
    • 2002
  • This paper presents a new approach using an Improved branch exchange (IBE) technique to maximize the voltage stability as well as loss minimization in radial power systems. A suitable voltage stability index (VSI) for optimal routing algorithm is developed using novel methods both a critical transmission path based on a voltage phasor approach and an equivalent impedance method. Furthermore, the proposed algorithm can automatically detect the critical transmission path to be reached to a critical load faced with voltage collapse due to additional real or reactive leading. To develop an effective optimization technique, we also have applied a branch exchange algorithm based on a newly derived index of loss change. The proposed IBE algorithm for VSI maximization can effectively search the optimal topological structures of distribution feeders by changing the open/closed states of the sectionalizing and tie switches. The proposed algorithm has been tested with the various radial power systems to show its favorable performance.

  • PDF

Performance Analysis of Bandwidth Allocation Scheme using POBP Method in ATM Networks. (ATM 네트워크에서 POBP 방식을 이용한 대역폭 할당 방법의 성능분석)

  • 한상엽;박광채
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.3
    • /
    • pp.537-548
    • /
    • 2000
  • ATM is the effective information transmission method which multiply statistical and can accept effective the traffic of the various transmission rate. However, it can happen excessive cell loss probability and cell delay when it have temporarily overload. Therefore, it is required the effective traffic control and network resource management for which guarantee QoS(Quality of Service) in terms of users and bandwidth utilization maximization in terms of networks. In this paper, we proposed POBP(PushOut BP) scheme which mixed pushout scheme with BP(Back Pressure), reactive control scheme recommended at the ATM Forum, to guarantee QoS in two stages ATM switch networks. In proposed method, we have to understand exactly using bandwidth information in real-time and become traffic shaping. Thorough these processes, we can not only use effectively unused bandwidth, but also guarantee the fair bandwidth utilization and then can improve cell-loss possibility happened by congestion states in two stage ATM networks.

  • PDF

A Network Coding Mechanism Minimizing Congestion of Lossy Wireless Links (손실이 있는 무선 링크에서 혼잡을 최소화하는 네트워크 코딩 기법)

  • Oh, Hayoung;Lim, Sangsoon
    • Journal of KIISE:Information Networking
    • /
    • v.41 no.4
    • /
    • pp.186-191
    • /
    • 2014
  • Previous work only focuses on a maximization of network coding opportunity since it can reduce the number of packets in network system. However, it can make congestion in a relay node as each source node may transmit each packet with the maximum transmission rate based on the channel qualities. Therefore, in this paper, we propose CmNC (Congestion minimized Network Coding over unreliable wireless links) performing opportunistic network coding to guarantee the network coding gain with the consideration of the congestion and channel qualities. The relay node selects the best network code set based on the objective function for reducing the packet loss and congestion via a dynamic programming. With Qualnet simulations, we show CmNC is better up to 20% than the previous work.