• Title/Summary/Keyword: Transmission Loss Allocation

Search Result 57, Processing Time 0.024 seconds

Harmonic Distortion Contribution for the Transmission Loss Allocation in Deregulated Energy Market: A New Scheme for Industry Consumer

  • Nojeng, Syarifuddin;Hassan, Mohammad Yusri;Said, Dalila Mat;Abdullah, Md.Pauzi;Hussin, Faridah
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.1-7
    • /
    • 2015
  • The industry has rapidly growth and energy supply technology advanced are become main factor which to contribute of the harmonic losses. This problem is one aspect that may affect the capability of the transmission line and also to the efficiency of electricity. This paper proposes a new scheme to allocate the cost pertaining to transmission loss due to harmonics. The proposed method, called as Generalized Harmonic Distribution Factor, uses the principle of proportional sharing method to allocate the losses among the transmission users especially for industry consumers. The IEEE 14- and 30 bus test system is used to compare the proposed method with existing method. The results showed that the proposed method provided a scheme better in allocating the cost of transmission loss, which could encourage the users to minimize the losses.

Transmission Cost Allocation Considering Reliability Cost (신뢰도 비용을 고려한 송전요금 할당)

  • Park, Yeong-Hyeon;Kim, Dong-Min;Kim, Jin-O
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.4
    • /
    • pp.576-581
    • /
    • 2008
  • Electricity Market in Korea can't provide locational price signal through energy price because energy market is CBP(Cost Based Pool) using uniform price. Generators don't want to locate in a densely populated load area(like the metropolitan area). Because they are paid more fixed cost in metropolitan area. This situation has loss and congestion occurred in power system. However energy market without price signal can't lead generator to the metropolitan. So, market participants should be provided price signal through the transmission price instead of energy price. This paper proposes transmission pricing method considering reliability cost in order to offer price signal. Also, it proposes the method to allocate the transmission cost to each transmission line user through a fair and a reasonable manner. The transmission price is decided by the reliability value of each line. If a transmission line of high reliability value is broke, users using that line will get a loss and a discomfort. So, it is fair that users using a transmission line of high reliability value pay more than the other users. Also, it is reasonable that a transmission line owner get paid more form users using that line.

Optimal Capacity and Allocation of Distributed Generation by Minimum Operation Cost in Distribution Systems

  • Shim Hun;Park Jung-Hoon;Bae In-Su;Kim Jin-O
    • KIEE International Transactions on Power Engineering
    • /
    • v.5A no.1
    • /
    • pp.9-15
    • /
    • 2005
  • In the operation of distribution systems, DGs (Distributed Generations) are installed as an alternative to extension and the establishment of substations, transmission and distribution lines according to the increasing power demand. In the operation planning of DGs, determining optimal capacity and allocation achieves economical profitability and improves the reliability of power distribution systems. This paper proposes a determining method for the optimal number, size and allocation of DGs in order to minimize the operation costs of distribution systems. Capacity and allocation of DGs for economical operation planning duration are determined to minimize total cost composed with power buying cost, operation cost of DGs, loss cost and outage cost using the GA (Genetic Algorithm).

Allocation of Real Power losses to Individual Loads Under Competition of Deregulated Power Industries (전력산업의 경쟁체제에서 유효전력 손실을 부하에 배분하는 방법)

  • Ro, Kyoung-soo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.6
    • /
    • pp.114-120
    • /
    • 2004
  • The paper proposes a method calculate the allocations of real power losses in transmission lines to individual loads based on loss distribution factors and compares them with those using marginal loss factors. The proposed method is implemented by defining loss distribution factors and analysing the individual loads' shares in the transmission line losses. Computer simulations on a 9-bus sample system verify effectiveness of the algorithm proposed and give an assertion that it is desirable to allocate power losses to loads using loss distribution factors rather than based on marginal loss factors.

A Dynamic Bandwidth Allocation for the Efficient Transmission of VBR Video Sources in ATM Networks (ATM 망에서 VBR 비디오 소스의 효율적인 전송을 위한 동적 대역 할당)

  • 이팔진;최대규;김병옥;김영선;김영천
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.9
    • /
    • pp.1219-1228
    • /
    • 1995
  • In this paper, we propose a dynamic bandwidth allocation scheme for the transmission of VBR video source through ATM based BISDN. In order to efficiently evaluate the required bandwidth, the characteristics of the VBR video sources generated by the MPEG coder are analyzed with variations in the number of GOP and quantizer scale. The required bandwidth for VBR video source is estimated by a prediction algorithm using scene and frame correlations as well as the statistical properties of the VBR video source. Scene correlation represents a strong correlation among the adjacent slices in a frame, and frame correlation represents a strong correlation among the frames. The statistical properties based on the traffic parameters of video sources such as peak rate, average rate, and standard deviation of source are determined through simulation. The performance of the proposed bandwidth allocation scheme is evaluated in terms of the over-allocated bandwidth, bandwidth utilization, and cell loss rate with variations in the quantizer scale and the number of GOP. It is shown that the results of simulation based on the proposed scheme are superior to those of the conventional methods.

  • PDF

An adaptive bandwidth allocation for the two-layer VBR video transmission in ATM networks (ATM망에서 2계층 VBR 비디오 전송을 위한 적응적인 대역할당)

  • 이동은;이청훈;이팔진;김영선;김영천
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.8
    • /
    • pp.1928-1936
    • /
    • 1996
  • In this paper, we propose an adaptive bandwidth allocation algorithm for the transmission of VBR video through ATM Networks. In order to evaluate the required bandwidth for the VBR video, the characteristics of the compressed VBR video generated by the two-layered coder are analyzed with variations in the number of GOP(N), quantizer scale(q), and the number of low-frequency DCT coefficients(.betha.). The two-layer coder which is used to separate from the number of DCT coefficients is designed to transmit the VBR video efficiently. The compressed data generated by the two-layer coder are splitted into the high priority and low priority cells. If congestion is occurred in ATM networks, the minimum image quality is maintained by the high priority cells. The required bandwidth for VBR video is estimated with a prediction algorithm using the scene anframe correlations as well as the statistical properties of the VBR video sources. Strong correlation among the adjacent slices in a frame represents by the scene correlation andstrong correlation among the frames is represented by the frame correlation. The performance of the bandwidth allocation scheme proposed is evaluated in terms of the bandwith utilization, cell loss rate, and SNR with variations in q, n, .betha.. Simulation rewsults shown that the proposed scheme is superior to the conventional methods.

  • PDF

Optimal Capacity and Allocation Distributed Generation by Minimization Operation Cost of Distribution System (배전계통 운영비용의 최소화에 의한 분산전원의 최적 용량과 위치결정)

  • 배인수;박정훈;김진오;김규호
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.9
    • /
    • pp.481-486
    • /
    • 2004
  • In operation of distribution system, $DG_s$ Distributed Generations) are installed as an alternative of extension and establishment of substations and transmission and distribution lines according to increasing power demand. In operation planning of $DG_s$, determining optimal capacity and allocation gets economical pro(it and improves power reliability. This paper proposes determining a optimal number, size and allocation of $DG_s$ needed to minimize operation cost of distribution system. Capacity of $DG_s$ (or economical operation of distribution system estimated by the load growth and line capacity during operation planning duration, DG allocations are determined to minimize total cost with power buying cost. operation cost of DG, loss cost and outage cost using GA(Genetic Algorithm).

Transmission Pricing in consideration of loss property of groups of generator and load (발전사업자와 부하사업자의 손실특성을 고려한 송전비용산정기법에 관한 연구)

  • Kim, Kang-Won;Chung, K.H.;Shin, Y.G.;Kim, Bal-Ho H.
    • Proceedings of the KIEE Conference
    • /
    • 2003.11a
    • /
    • pp.460-462
    • /
    • 2003
  • One of many elements considered important is TR-Cost in restructed electrical power market. KEMA supposed the TR-Cost system which involved an allocation rate of groups of generator and load as 5 to 5 but it isn't based on electrical and economic theory. Also there is a defect that we cann't calculate each allocation to numerous members forming the group of generators and loads. Therefore, in this paper, we propose an allocation method by using "generator forcused TR MLF" & "load forcused TR MLF" in consideration of economic signal.

  • PDF

A Study on the Optimum Operational Control of Power System (전렬계통의 합리적 운용제어에 관한 연구)

  • 정재길;박영문
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.33 no.10
    • /
    • pp.410-422
    • /
    • 1984
  • This paper presents a new practical method for optimal active and reactive power control for the economic operation in electrical power system, and the programs are developed for digital computer solution. The major features and techniques of this paper are as follows: 1) The method is presented for finding the equivalent active power balance equation applying the sparse Jacobian matrix of power flow equation instead of using B constant as active power balance equation considering transmission loss, and thus for determining directly optimal active power allocation berween generator unitw satisfying the equality and inequality constraints. 2) The method is proposed for solving directly the optimum economim dispatch problem without using gradient method and penalty function for both active and reactive power control. As a result, the computing time are reduced and convergence characteristic is remarkably improved. 3) Unlike most of conventional methods which adopt the transmission loss as a objective function for reactive power control, the total fuel cost of themal power plant is adopted as objective function for both active and reactive power control. consequently, more reasonable and economic profit can be achieved.

Models and Experiments for the Main Topologies of MRC-WPT Systems

  • Yang, Mingbo;Wang, Peng;Guan, Yanzhi;Yang, Zhenfeng
    • Journal of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.1694-1706
    • /
    • 2017
  • Models and experiments for magnetic resonance coupling wireless power transmission (MRC-WPT) topologies such as the chain topology and branch topology are studied in this paper. Coupling mode theory based energy resonance models are built for the two topologies. Complete energy resonance models including input items, loss coefficients, and coupling coefficients are built for the two topologies. The storage and the oscillation model of the resonant energy are built in the time domain. The effect of the excitation item, loss item, and coupling coefficients on MRC systems are provided in detail. By solving the energy oscillation time domain model, distance enhancing models are established for the chain topology, and energy relocating models are established for the branch topology. Under the assumption that there are no couplings between every other coil or between loads, the maximum transmission capacity conditions are found for the chain topology, and energy distribution models are established for the branch topology. A MRC-WPT experiment was carried out for the verification of the above model. The maximum transmission distance enhancement condition for the chain topology, and the energy allocation model for the branch topology were verified by experiments.