• Title/Summary/Keyword: Transmission Line Theory

Search Result 191, Processing Time 0.025 seconds

Modal Transmission-Line Theory of Three-Waveguide Couplers (3-도파로 방향성 결합기의 전송선로 해석법)

  • 호광춘;이리홍김영권
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.185-188
    • /
    • 1998
  • A three-waveguide coupler consisted of a central guide and two side guides is theoretically explored by using modal transmission-line theory. The numerical results reveal that the coupling length Lc is different from that calculated by coupled-mode theory and the difference increases gradually as the guiding modes increase.

  • PDF

Static and Dynamic Behavior of Tunable DFB Laser based on Modal Transmission-Line Theory (전송선로 이론에 기초한 파장 변환 DFB 레이저의 정적 및 동적 작용)

  • Ho, Kwang-Chun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.2
    • /
    • pp.147-152
    • /
    • 2014
  • A longitudinal modal transmission-line theory(L-MTLT) to analyze the static and dynamic behavior of two-section distributed feedback (DFB) lasers is used. The characteristic impedance and equivalent propagation constant of DFB structure with active layer are derived from L-MTLT. A two-section DFB laser is analogous to a transmission-line network, in which each section is described by transmission-line block corresponding to the equivalent factors. The longitudinal resonant condition of DFB laser based on equivalent transmission-line network is used to reformulate the rate equations so that static and dynamic behavior of two-section DFB lasers with active layer is demonstrated and analyzed accurately.

Numerical simulation of unsteady galloping of two-dimensional iced transmission line with comparison to conventional quasi-steady analysis

  • Yang, Xiongjun;Lei, Ying;Zhang, Jianguo
    • Structural Engineering and Mechanics
    • /
    • v.75 no.4
    • /
    • pp.487-496
    • /
    • 2020
  • Most of the previous works on numerical analysis of galloping of transmission lines are generally based on the quasisteady theory. However, some wind tunnel tests of the rectangular section or hangers of suspension bridges have shown that the galloping phenomenon has a strong unsteady characteristic and the test results are quite different from the quasi-steady calculation results. Therefore, it is necessary to check the applicability of the quasi-static theory in galloping analysis of the ice-covered transmission line. Although some limited unsteady simulation researches have been conducted on the variation of parameters such as aerodynamic damping, aerodynamic coefficients with wind speed or wind attack angle, there is a need to investigate the numerical simulation of unsteady galloping of two-dimensional iced transmission line with comparison to wind tunnel test results. In this paper, it is proposed to conduct a two dimensional (2-D) unsteady numerical analysis of ice-covered transmission line galloping. First, wind tunnel tests of a typical crescent-shapes iced conductor are conducted firstly to check the subsequent quasisteady and unsteady numerical analysis results. Then, a numerical simulation model consistent with the aeroelastic model in the wind tunnel test is established. The weak coupling methodology is used to consider the fluid-structure interaction in investigating a two-dimension numerical simulation of unsteady galloping of the iced conductor. First, the flow field is simulated to obtain the pressure and velocity distribution of the flow field. The fluid action on the iced conduct at the coupling interface is treated as an external load to the conductor. Then, the movement of the conduct is analyzed separately. The software ANSYS FLUENT is employed and redeveloped to numerically analyze the model responses based on fluid-structure interaction theory. The numerical simulation results of unsteady galloping of the iced conduct are compared with the measured responses of wind tunnel tests and the numerical results by the conventional quasi-steady theory, respectively.

Modal Transmission-Line Theory of Quantum-Well Couplers based on Schrodinger Equation (Schrodinger 방정식에 기초한 Qilantuin-Well 결합기의 모드전송선로 해석법)

  • 호광춘;윤인국;김영권
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.917-920
    • /
    • 1999
  • Modal transmission-line theory is described for guided electron waves in quantum-well structures. To demonstrate the validity and usefulness of this approach, we evaluate the propagation characteristics and the coupling properties of electron guiding couplers consisting of double quantum-wells (DQWs).

  • PDF

Modal Transmission-Line Theory to Design Circular Grating Filters for Optical Communication (광통신용 원통형 격자필터 설계를 위한 모드 전송선로 이론)

  • 호광춘;박천관
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.4
    • /
    • pp.27-33
    • /
    • 2003
  • Circular Distributed-feedback (DFB) guiding structures can be incorporated in most of the semiconductor laser devices because of the frequency-selective property applicable as an optical filter in optical communications. In this paper, we present a novel and simple modal transmission-line theory (MTLT) using Floquet-Babinet's principle to analyze the optical filtering characteristics of Bragg gratings with cylindrical profile. The numerical results reveal that this method offers a simple and convenient algorithm to analyze the filtering characteristics of circular DFB configurations as well as is extended conveniently to evaluate the guiding problems of circular multi-layered periodic structures.

Chaos Synchronization with Lossless Transmission Line of Chaos Circuit (무손실 전송선로를 가진 카오스 회로에서의 카오스 동기화)

  • 배영철
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1999.11a
    • /
    • pp.501-504
    • /
    • 1999
  • Chua's circuit is a simple electronic network which exhibits a variety of bifurcation and attractors. The circuit consists of two capacitors, an inductor, a linear resistor, and a nonlinear resistor. In this paper, a transmitter and a receiver using two identical Chua's circuits are proposed and a synchronizations of lossless transmission line are investigated. Since the synchronization of the transmission system is impossible by coupled synchronization, the drive-response synchronization theory were used. As a result, the chaos synchronization has delay characteristics in the lossless transmission system caused by the line parameters L and C.

  • PDF

Symmetrical Scanning Leaky Wave Antenaa Using Double Negative and Double Positive Transmission Line (Double Negative, Positive 전승 선로를 이용한 대칭적적인 주파수 스캐닝 누설파 안테나)

  • 이재곤;이정해
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.11
    • /
    • pp.1069-1074
    • /
    • 2004
  • In this paper, we have designed artificial double negative(DNG) transmission line composed of series inter-digital capacitor and two shunt inductive short stubs. This artificial DNG transmission line has the property of double positive (DPS) transmission line over some frequency ranges due to RF nature. In detail, this transmission line simultaneously has the contrary properties of DNG and DPS transmission line depending on operation frequency. DPS/DNG transmission line at leaky region is utilized to design frequency scanning antenna with backfire-to-endfire. We have simulated and measured the dispersion and for-field radiation beam patterns of symmetrical leaky wave antenna. The results show rough agreement.

Modelling the Mode Behavior of Circular Vertical-Cavity Surface-Emitting Laser

  • Ho, Kwang-Chun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.4 no.2
    • /
    • pp.22-27
    • /
    • 2012
  • The design characteristics of circular vertical-cavity surface-emitting lasers are studied by using a newly developed equivalent network. Optical parameters, such as the stop-band or the reflectivity of periodic mirrors and the resonance wavelength, are explored for the design of these structures. To evaluate the differential quantum efficiency and the threshold current density, a transverse resonance condition of modal transmission-line theory is also utilized. This approach dramatically reduces the computational time as well as gives an explicit insight to explore the optical characteristics of circular vertical-cavity surface-emitting lasers (VCSELs).

On Optical Power Distribution of Grating-Assisted Couplers with Three-Guides

  • Ho, Kwang-Chun;Kim, Yung-Kwon
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.945-948
    • /
    • 2000
  • The coupling properties of supermodes guided by grating-assisted directional couplers (GADCs) can be phrased in rigorous modal theory. Such a modal solution for TE modes expressed by simple electrical transmission-line networks is utilized to analyze the power distribution of GADCS with three guiding channels. In particular, the modal transmission-line theory can serve as a template for computational algorithms that systematically evaluate the coupling efficiency that are not readily obtained by other methods.

  • PDF

Optical Power Transfer of Grating - Assisted Directional Coupler with Three - Guiding Channels : TM modes Case

  • Ho, Kwang-Chun;Ho, Kwang-Soo
    • Journal of the Optical Society of Korea
    • /
    • v.8 no.4
    • /
    • pp.149-155
    • /
    • 2004
  • Newly developed modal transmission-line theory(MTLT) is used to analyze rigorously the optical power distribution in grating-assisted directional couplers(GADCs) with three guiding channels. By defining a novel coupling efficiency ${\eta}$ amenable to the rigorous analytical solutions of modal transmission-line theory, we explicitly evaluate the power coupling and distribution of TM modes. The results reveal that the incident power is sensitively partitioned through three output channels in terms of such grating parameters as the grating period, the duty cycle, and the operating wavelength.