• Title/Summary/Keyword: Transmembrane Pressure

Search Result 127, Processing Time 0.019 seconds

Effects of Quorum Quenching on the Microbial Community of Biofilm in an Anoxic/Oxic MBR for Wastewater Treatment

  • Jo, Sung Jun;Kwon, Hyeokpil;Jeong, So-Yeon;Lee, Sang Hyun;Oh, Hyun-Suk;Yi, Taewoo;Lee, Chung-Hak;Kim, Tae Gwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.9
    • /
    • pp.1593-1604
    • /
    • 2016
  • Recently, bacterial quorum quenching (QQ) has been proven to have potential as an innovative approach for biofouling control in membrane bioreactors (MBRs) for advanced wastewater treatment. Although information regarding the microbial community is crucial for the development of QQ strategies, little information exists on the microbial ecology in QQ-MBRs. In this study, the microbial communities of biofilm were investigated in relation to the effect of QQ on anoxic/oxic MBRs. Two laboratory-scale MBRs were operated with and without QQ-beads (QQ-bacteria entrapped in beads). The transmembrane pressure increase in the QQ-MBRs was delayed by approximately 100-110% compared with conventional- and vacant-MBRs (beads without QQ-bacteria) at 45 kPa. In terms of the microbial community, QQ gradually favored the development of a diverse and even community. QQ had an effect on both the bacterial composition and change rate of the bacterial composition. Proteobacteria and Bacteroidetes were the most dominant phyla in the biofilm, and the average relative composition of Proteobacteria was low in the QQ-MBR. Thiothrix sp. was the dominant bacterium in the biofilm. The relative composition of Thiothrix sp. was low in the QQ-MBR. These findings provide useful information that can inform the development of a new QQ strategy.

The Effect of Pulsatile Flow on Ultrafiltration In-Vitro Study and Comparison with Roller Pump

  • Lee K.;Jeong J. H.;Mun C. H.;Lee J. C.;Min B. G.
    • Journal of Biomedical Engineering Research
    • /
    • v.26 no.5
    • /
    • pp.337-341
    • /
    • 2005
  • Blood pulsation has been reported to have an advantageous effect on extracorporeal blood circulation. However, the study of pulsatile blood flow in renal replacement therapy is very limited. The in-vitro experimental results of pulsatile blood flow on ultrafiltration, when compared with the conventional roller pump, are described in this paper. Methods: Blood flow rate (QB) and transmembrane pressure (TMP) were considered as regulating factors that have an influence on ultrafiltration. Experiments were performed under the condition of equal TMP and OB in both pulsatile and roller pump groups, Several kinds of hollow fiber dialyzers were tested using distilled water containing chemicals as a blood substitute. Mean TMP (mTMP) varied from 10 to 90mmHg while the QB was 200ml/min. Results: Ultrafiltration rate (QUF) was found to be linearly proportional to TMP, whereas QB had little influence on QUF. In addition, QUF was higher in the pulsatile group than the roller pump group at the identical TMP. Conclusion: In the controlled test, QUF increased solely as a consequence of blood pulsation, which implies that the pulse frequency represents an additional and important clinical variable during renal replacement therapy.

UF pretreatment at elevated temperature within the scheme of hybrid desalination: Performance and environmental impact

  • Agashichev, Sergey;Kumar, Jayesh
    • Membrane and Water Treatment
    • /
    • v.8 no.3
    • /
    • pp.279-292
    • /
    • 2017
  • This study was aimed at ultrafiltration (UF) as a pretreatment before reverse osmosis (RO) within the scheme of hybrid reverse osmosis-multistage flush (RO-MSF) desalination. Seawater at elevated temperature (after MSF heat-exchangers) was used as a feed in this process. The pretreatment system was represented as a set of functionally-linked technological segments such as: UF filtration, backwashing, chemical- enhanced backwashing, cleaning, waste disposal, etc. The process represents the sequences of operating cycles. The cycle, in turn, consists of the following unit operations: filtration, backwashing and chemical-enhanced backwashing (CEB). Quantitative assessment was based on the following indicators: normalized permeability, transmembrane pressure, specific energy and water consumption, specific waste generation. UF pre-treatment is accompanied by the following waste streams: $W1=1.19{\times}10$ power of $-2m^3$ (disposed NaOCl with 0.0044% wt.)/$m^3$ (filtrate); $W2=5.95{\times}10$ power of $-3m^3$ (disposed $H_2SO_4$ with 0.052% wt.)/$m^3$(filtrate); $W3=7.26{\times}10$ power of $-2m^3$ (disposed sea water)/$m^3$ (filtrate). Specific energy consumption is $1.11{\times}10$ power of $-1kWh/m^3$ (filtrate). The indicators evaluated over the cycles with conventional (non-chemical) backwashing were compared with the cycles accompanied by CEB. A positive impact of CEB on performance indicators was demonstrated namely: normalized UF resistance remains unchanged within the regime accompanied by CEB, whereas the lack of CEB results in 30% of its growth. Those quantitative indicators can be incorporated into the target function for solving different optimization problems. They can be used in the software for optimisation of operating regimes or in the synthesis of optimal flow- diagram. The cycle characteristics, process parameters and water quality data are attached.

Application of chemically enhanced backwash coping with algal inflow in desalination pretreatment using ceramic membrane (세라믹 분리막을 이용한 해수담수화 전처리 공정에서 조류 유입에 대한 유지세정 적용)

  • Kang, Joon-Seok;Park, Seo-Gyeong;Lee, Jeong-Jun;Kim, Han-Seung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.2
    • /
    • pp.97-106
    • /
    • 2018
  • In this study, the effect of chemically enhanced backwash(CEB) coping with algal(Heterosigma Akashiwo) inflow was evaluated in the seawater desalination pretreatment process using ceramic membrane. In order to confirm the possibility of long-term filtration operation, the recovery rate of transmembrane pressure(TMP) due to the CEB using NaOCl was examined. When the membrane flow rate was 83.3 LMH, the TMP was maintained within 200 kPa for 84 hours in seawater influent. As the algal counts of 30,000 cell/mL were injected into the influent of seawater, however, the TMP rapidly increased and exceed maximum value. Membrane fouling caused by the algae was very poorly recovered by usual physical backwash. The CEB was performed for 30 min(3 min circulation / 27 min immersion) with 300 mg/L of NaOCl. As a result of the CEB application, it was possible to maintain a stable operating of filtration during 10 days and the average recovery rate of TMP by the CEB was 98.1%. It has been confirmed that the CEB using NaOCl is very effective in removal of membrane fouling by algae, resulted in stable membrane filtration for the long-term operation.

Separation and Purification of Lysozyme from Chicken Eggwhite Through Ultrafiltration (한외여과를 통한 난백 중 라이소자임의 분리정제)

  • Koo Ja-Kyung;Son Dongho;Jun Hoejin;Lee Yunhee;Cho Namjun;Jang Dong Il
    • Membrane Journal
    • /
    • v.15 no.2
    • /
    • pp.121-131
    • /
    • 2005
  • Separation and purification of lysozyme from chicken egg white was studied using ultrafiltration. We have obtained experimental data through the cellulose membranes with the molecular weight cut off (MWCO) of 10 kDa, 30 kDa and 100 kDa in a stirred ultrafiltration device. Certain amounts of egg white were dissolved into 20 mM phosphate buffers of pH 6, 7 and 8 to make protein solutions of $1\%,\;2\%,\;3\%\;and\;10\%$ concentration. Permeation flux increased with increasing MWCO of the membrane. Permeation flux increased with increasing transmembrane pressure (TMP) and decreasing the protein concentration. As the MWCO of membrane decreased, the selectivity increased. The selectivity increased with increasing TMP and protein concentration of the solution.

Effect of Electrical Field on Ultrafiltration for Protein Separation (단백질 분리를 위한 한외여과에서의 전기장의 영향)

  • Koo Ja-Kyung;Son Dongho;Lee Yunhee;Cho Namjun;Jang Dong Il
    • Membrane Journal
    • /
    • v.15 no.2
    • /
    • pp.132-140
    • /
    • 2005
  • The effects of electrical fields on the efficiencies in ultrafiltration for protein separation were explored. The experiments were proceeded under constant transmembrane pressure (THP) using protein (albumin and lysozyme) solutions. For ultrafiltrations, cellulose membranes with molecular weight cut off (MWCO) 30 kDa were used. It is found that electrical field improved the filtration flux of albumin solution. The electrical field showed another interesting effect for filtration of protein solution. Depending on the electrical charges of protein molecules, the electrical field promoted or hindered the permeation of proteins through membranes. With the effect of electrical field, not only the permeation flux but also the selectivity of ultrafiltration could be improved.

Physicochemical Effect on Permeate Flux in a Hybrid Ozone-Ceramic Ultrafiltration Membrane Treating Natural Organic Matter (자연유기물을 처리하는 혼합 오존-세라믹 한외여과 시스템에서 물리화학적 특성이 투과플럭스에 미치는 영향)

  • Kim, Jeong-Hwan
    • Membrane Journal
    • /
    • v.18 no.4
    • /
    • pp.354-361
    • /
    • 2008
  • Effects of operational conditions and solution chemistry on permeate flux in a hybrid ozone-ceramic ultra-filtration (UF) membrane system treating natural organic matter (NOM) were investigated. Results showed that the extent of permeate flux decline was higher at higher cross-flow velocity and ozone dosage, but it was higher at lower transmembrane pressure (TMP). The mechanism of fouling mitigation was found to be more dependent upon reaction between ozone and natural organic matter at/near catalytic membrane surface than scouring effect due to ozone gas bubbles. Addition of calcium into model NOM solution at high pH led to significant decline in permeate flux while the calcium effect on permeate flux decline was less pronounced at lower pH. After permeate flux decline during the early stage of filtration, the flux started recovering and approached fully to the initial value of it due to degradation of NOM by catalytic ozonation at ceramic membrane surface in the hybrid ozone-ceramic membrane system.

Protein Fraction Extracted from the Earthworm Lumbricus rubellus Activates Proteinase Activated Receptor-2 and is Effective on Hemokinesis (적토룡 추출 단백분획의 프로테나제 유도 수용체-2의 활성화 및 형행개선 효과)

  • Lee, Chul-Kyu;Shin, Jang-Sik;Choi, Young-Keun;Lim, Chae-Kon;Cho, Il-Hwan;Kim, Chul
    • YAKHAK HOEJI
    • /
    • v.41 no.2
    • /
    • pp.247-254
    • /
    • 1997
  • The proteinase-activated receptor (PAR-2) belongs to the family of seven transmembrane region receptors, like the thrombin receptor, it is activated by specific proteolytic clea vage of its extracellular amino terminus and a synthetic peptide (SLIGRL). The earthworm protein fraction (EPF) extracted from Lumbricus rubellus elicted dose- and endothelium-dependent relaxations in phenylephrine-contracted rat thoracic aorta, whereas heat inactivated EPF (0.5 ${\mu}g$ /ml) had no effect. In the presence of the nitric oxide synthase inhibitor NG-methyl-L-arginine (1.8 micro M), EPF (0.5 ${\mu}g$ /ml)-induced relaxations were partially inhibited. Furthermore, EPF (0.5 ${\mu}g$ /ml) dramatically caused relaxation of thrombin-desenstized rat thoracic aorta. These results indicate that EPF activates PAR-2 in vascular endothelial cell. Intravenous injection of EPF (20 mg/kg, bolus) into anesthetized rats produced a marked depressor response. EPF (0 ~ 80 ${\mu}g$ /ml, gradient) was very effective on increasing of perfusion volume in rabbit ear vessel preparations. These results imply the usefulness of EPF as a vascular smooth muscle relaxant and indicate that the activation of PAR-2 may be a mechanism of EPF on hemokinetic improvement.

  • PDF

Improvement of Convection by Pulsatile Blood Pump in High Flux Hemodialysis System (고 유량 혈액 투석 시스템에서 박동류 펌프에 대한 대류 향상에 관한 연구)

  • Choi, D.S.;Um, K.M.;Lee, J.C.;Lee, S.R.;Mun, C.H.;Choi, H.;Min, B.G.;Kim, H.C.
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.5
    • /
    • pp.376-383
    • /
    • 2008
  • High-flux dialysis treatment removes various toxins via diffusion as well as convection, which is induced by ultrafiltration and backfiltration. In this study, in vitro (Using the distilled water and the bovine's blood) comparison test was performed to determine whether utilization of a high flux dialyzer paired with different pumps would increase the efficiency of convection. At the same blood flow rates, a pulsatile pump and a roller pump were employed to propel the distilled water and bovine whole blood to a high flux dialyzer. Pressures at the dialyzer inlet and outlet in the blood circuit and in the dialysate circuit were measured, respectively. From these data, we calculated the transmembrane pressure and predicted the ultrafiltration and backfiltration rates developed by both pumps. Using the bovine's blood experiment, ultrafiltration and backfiltration rates were 1.6 times higher with the pulsatile pump than with the roller pump. We conclude that utilization of a pulsatile pump in high flux hemodialysis treatments increases ultrafiltration volume, compared with a roller pump under conditions of the same blood flow rate.

Effects of Sludge Pre-Treatment on the Excess Sludge Production in a Membrane-Coupled Bioreactor (막결합형 생물반응조에서 슬러지 전처리가 잉여슬러지 발생량에 미치는 영향)

  • Lee, Kang-Hoon;Kim, Ju-Hyun;Nguyen, Hai;Yeom, Ick-Tae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.4
    • /
    • pp.565-572
    • /
    • 2011
  • The effects of chemical pretreatments on the excess sludge production in the membrane-coupled bioreactor were investigated. In addition, their effects on membrane fouling were also evaluated. Two membrane bioreactors were operated. In one reactor, a part of the mixed liquor was t reated with NaOH and ozone gas consecutively and was returned to the reactor. T he f lowrate of the chemical pretreatment stream was 1.5% of the influent flowrate. During the 200days of operation, the MLSS level in the bioreactor with mixed liquor pretreatment was maintained relatively constant at the range of 8,000 ~ 10,000$mg/{\ell}$ while it increased steadily up to 26,000 $mg/{\ell}$ in the absence of the pretreatment. Each reactor was equipped with two laboratory membrane modules where the flux for each module was 20, and 30 ${\ell}/m^2{\cdot}h$, respectively. With pretreatment, almost constant transmembrane pressure(TMP) was observed throughout the operation at the flux of 20 ${\ell}/m^2{\cdot}h$. Without pretreatment the membrane module at the same flux could also be operated at relatively stable condition. However, as the MLSS increases up to 25,000 $mg/{\ell}$, a fast TMP increase was observed. In conclusion, a complete control of excess sludge production in the membrane-coupled bioreactor was possible without significant deterioration of the treated water quality. In addition, it was shown that stable operation in terms of TMP is possible with sludge pretreatment and recirculation.