• Title/Summary/Keyword: Translational friction motion

Search Result 9, Processing Time 0.017 seconds

Motion of a Cylindrical Object due to Seabed Soil Friction (해저면 토양마찰력에 의한 원통형 물체의 운동)

  • 최경식;강신영;곽한우
    • Journal of Ocean Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.19-28
    • /
    • 1992
  • The motion of a cylindrical object resting on shallow seabed due to wave forces and soil friction is studied. Given environmental conditions such as wave characteristics and seabed soil properties, the equations of motion are derived and the corresponding reponses of the cylinder in two dimensional plane, i.e., translational and rotational displacements, accelerations, are calculated. The motion is substantially restrained by the penetration of a cylinder into seabed and the parametric study focuses on finding out a minimum penetration depth which makes the cylinder motionless.

  • PDF

Dynamic Stability of a Drum-Brake Pad Considering Rotary Inertia and Shear Deformation (회전광성과 전단변형을 고려한 드럼-브레이크 패드의 동적안정성)

  • 오부진;공용식;류봉조;이규섭;임경빈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.181-185
    • /
    • 2001
  • This paper deals with the dynamic stability of a disc brake pad taking into account of its shear deformation and rotary inertia. A brake pad can be modeled as a beam like model subjected to distributed friction forces and having two translational springs. The study of this model is intended to provide a fundamental understanding of dynamic stability of drum brake pad. Governing equations of motion are derived from extended Hamilton's principle and their corresponding numerical solutions are obtained by applying the finite element formulation. The critical distributed friction force and the instability types are investigated bt changing two translational spring constants, rotary inertia parameter and shear deformation parameter. Also, the changes of eigen-frequencies of a beam determining instability types are investigated for various combinations of two translational spring constants.

  • PDF

Dynamic Instability of a Disc Brake Pad under Distributed Friction Force (분포마찰력을 받는 디스크 브레이크 패드의 동적 불안정)

  • Oh, Boo-Jin;Ryu, Bong-Jo;Yim, Kyung-Bin;Sugiyama, Yoshihiko;Ryu, Si-Ung
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.665-670
    • /
    • 2000
  • The paper presents the dynamic instability of a disc brake pad subjected to distributed friction forces. A brake pad can be modeled as a beam with two translational springs. The study of this prototypical model is intended to provide a fundamental understanding of disc brake pad instabilities. Governing equations of motion are derived form energy expressions and their corresponding solutions are obtained by employing the finite element method. The critical distributed friction force and the instability regions are demonstrated by changing two translational spring constants. Finally, the changes of eigen-frequencies of a beam determining instability types are investigated for various combinations of two spring constants.

  • PDF

Kinematic Modeling of a Car-like Planar Mobile Robot with Four Fixed Wheels (네 개의 고정 바퀴가 장착된 자동차 구를 평면형 모바일 로봇의 기구학 모델링)

  • Lee, Seung-Eun;Kim, Hui-Guk;Lee, Byeong-Ju
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.7
    • /
    • pp.28-35
    • /
    • 2002
  • This paper deals with kinematic modeling of a car-like planar mobile robot consisting of four conventional fixed wheels attached on two parallel axles. The kinematic model of such a mobile robot requires the description of skidding and sliding frictional motion. Previous kinematic model proposed by Muir and Newman$^{[1]}$ does not include such frictional motions. Thus, does it result in least square solution in estimating a sensed forward velocity solution. A modified kinematic model is proposed by incorporating transnational friction motion into the original algorithm. It is shown that transnational friction motions should be included into kinematic model of the mobile robot to represent its real physical motion.

The Motion Control of Concrete Floor Finishing Robot (미장로봇의 운동제어)

  • Shin, Dong-Hun;Han, Doo Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.8
    • /
    • pp.38-45
    • /
    • 1999
  • The 2-trowel type concrete floor finishing robot can move in any direction by adjusting the posture or trowels without any wheels. Since the quality of the smoothed and polished concrete floor is determined by plastering speed, we need to control the velocity of the robot. However, we cannot use the typical motion control method because it is very difficult to measure the velocity of the robot, in contrast to the mobile robots with wheels. To overcome this difficulty, the following are studied in this paper: we found that the robot dynamics has the disturbance depending on its translational speed, and showed that there exists the saturated velocity of the robot which is set by the posture of the trowels, and obtained the relationship between the saturated velocity and the posture in the translation. The result enables us to control the motion of the robot only by adjusting the posture of trowels without measuring the velocity of the robot. Currently, we built the troweling robot and are experimenting its performance with the proposed motion control method.

  • PDF

Surface Mounting Device의 동역학적 모델링 및 상태 민감도 해석

  • 장진희;한창수;김정덕
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.628-634
    • /
    • 1995
  • In the area of assembly process of micro-chips and electronic parts on the printed circuit board, surface mounting device(SMD) is used as a fundamental tool. Generally speaking, the motion of the SMD is based on the ball screw system operated by any type of actuators. The ball screw system is a mechanical transformer which converts the mechanical rotational motion to the translational one. Also, this system could be considered as an efficient motion device against mechanical backash and friction. Therefore a dynamic modeling and stste sensitivity analysis of the ball screw system in SMD have to be done in the initial design stage. In this paper, a simple mathematical dynamic model for this system and the sensitivity snalysis are mentioned. Especially, the bond graph approach is used for graphical modeling of the dynamic system before analysis stage. And the direct differentiation method is used for the state sensitivity analysis of the system. Finally, some trends for the state variables with respect to the design variables could be suggested for the better design based on the results on the results of dynamic and state sensitivity.

  • PDF

A Dynamic Modeling & State Sensitivity Analysis of the Surface Mounting Device (Surface Mounting Device의 동역학적 모델링 및 상태 민감도 해석)

  • Jang, Jinhee;Han, Changsoo;Kim, Jungduck
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.7
    • /
    • pp.90-99
    • /
    • 1996
  • In the area of assembly process of micro-chips and electronic parts on the printed circuit board, surface mounting device(SMD) is used as a fundamental tool. Generally speaking, the motion of the SMD is based on the ball screw system operated by any type of actuators. The ball screw system is a mechanical transformed which converts the mechanical rotational motion to the translational one. Also, this system could be considered as an efficient motion device against mechanical backlash and friction. Therefore a dynamic modeling and state sensitivity analysis of the ball screw system in SMD have to be done in the initial design stage. In this paper, a simple mathematical dynamic model for this system and the sensit- ivity analysis are mentioned. Especially, the bond graph approach is used for graphical modeling of the dynamic system before analysis stage. And the direct differentiation method is used for the state sensit- ivity analysis of the system. Finally, some trends for the state variables with respect to the design variables could be suggested for the better design and faster operating based on the results of dynamic and state sensitivity.

  • PDF

Diffusion Behavior of n-Alkanes by Molecular Dynamics Simulations

  • Goo, Geun-Hoi;Sung, Gi-Hong;Lee, Song-Hi;Chang, Tai-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.11
    • /
    • pp.1595-1603
    • /
    • 2002
  • In this paper we have presented the results of diffusion behavior of model systems for eight liquid n-alkanes ($C_{12}$-$C_{44}$) in a canonical (NVT) ensemble at several temperatures using molecular dynamics simulations. For these n-alkanes of small chain length n, the chains are clearly <$R_{ee}^2$>/6<$R_g^2$>>1 and non-Gaussian. This result implies that the liquid n-alkanes over the whole temperatures considered are far away from the Rouse regime, though the ratio becomes close to the unity as n increases. Calculated self-diffusion constants $D_{self}$ are comparable with experimental results and the Arrhenius plot of self-diffusion constants versus inverse temperature shows a different temperature dependence of diffusion on the chain length. The global rotational motion of n-alkanes is examined by characterizing the orientation relaxation of the end-to-end vector and it is found that the ratio ${\tau}1/{\tau}2$ is less than 3, the value expected for a isotropically diffusive rotational process. The friction constants ${\xi}$of the whole molecules of n-alkanes are calculated directly from the force auto-correlation (FAC) functions and compared with the monomeric friction constants ${\xi}_D$ extracted from $D_{self}$. Both the friction constants give a correct qualitative trends: decrease with increasing temperature and increase with increasing chain length. The friction constant calculated from the FAC's decreases very slowly with increasing temperature, while the monomeric friction constant varies rapidly with temperature. By considering the orientation relaxation of local vectors and diffusion of each site, it is found that rotational and translational diffusions of the ends are faster than those of the center.

Multibody Dynamics Analysis for Contacting Rigid Bodies (접촉하는 강체간의 다물체 동역학 해석)

  • Park, Jeong-Hun;Hwang, Yo-Ha;Yu, Hong-Hui
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.2 s.173
    • /
    • pp.411-420
    • /
    • 2000
  • This paper presents a new method for calculating contact position and contact force. The proposed method calculates accurate contact position by introducing intermediate parameters. Accurate contac t force can be obtained by solving reduced equations of motion iteratively. This method can be applied to calculate not only contact force on contact points but also contact force on kinematic joints such as a rotational joint and a translational joint. Four numerical examples are given to demonstrate the effectiveness of the proposed algorithm.