• Title/Summary/Keyword: Transition metals

Search Result 291, Processing Time 0.032 seconds

Synthesis and Characterization of Dense Ceramic Membranes for Methane Conversion - Part II

  • Santos, A.;Fontes, V.A.;Fontes, F.A.Oliveira;De Sousa, J.F.;De Souza, C.P.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1112-1113
    • /
    • 2006
  • The perovskite- type oxide $(ABO_3)$ containing transition metals on the B-site show mixed (electronic/ionic) conductivity. These mixed-conductivity oxides are promising materials for oxygen permeating membranes. The main objective of this research work is to synthesize and characterization ceramic powders of the Sr-Co-Fe-O system for methane conversion using membrane reactor. SCFO powders were synthesized from the route was based on the complex method of combination of acid EDTA and citrate and shown be available by control efficient of synthesis to performed $SrCo_{0.8}Fe_{0.2}O_{3-\delta$, moreover, it presented easy implementation, reproducibility and operation. Powder ceramic was characterized by XRD, microscopic optic, SEM and TG-DTA.

  • PDF

A STUDY ON THE SOLUBILITY OF DENTAL RESTORATIVE MATERIALS (치과용 수복재의 용해성에 관한 분석연구)

  • Na, Keung-Kyun;Park, Sang-Jin
    • Restorative Dentistry and Endodontics
    • /
    • v.16 no.1
    • /
    • pp.87-105
    • /
    • 1991
  • The purpose of this experiment was to measure the leaking and solubility of commonly used dental restorative materials - Silux plus (CS), Hi-pol (CH), Clearfil F-II, Fissureseal (FS), Glass-Ionomer cement Fuji Type II (GI), Amalgam Cavex 68 (AM), Zinc Phosphate Cement (ZP) and gutta-percha (GP) and investigate the relation between the solubility and marginal leakage. Disc-shape specimens were fabricated with each material and dipped into deionized water, 0.01M lactic acid and 0.005M KOH solution, thus the total ionic concentrations in each solution was measured with ion chromatograph after 1, 3, and 7 days, respectively. For the solubility test, each specimen was immersed in 0.001M and 0.01M lactic acid for 24 hours, respectively and total weight loss was calculated. Also, Zn leaking through the margin of restorations was measured. The obtained results were as follows: 1. The amounts of eluted ion from the eight materials were most in 0.01M lactic acid and least in deionized water. 2. Of the eight materials, the fluoride release was greatest for glass ionomer cement (GI) in 0.01 M lactic acid after 7 days. 3. In analysis of the divalent cation, Mg was eluted most for zinc phosphate cement (ZP) and Ca for Clearfil F-II (CF) in 0.01M lactic acid after 7 days. 4. In analysis of transition metals, Cu and Zn were detected only. 5. The solubility rate of eight materials was greater in 0.01M lactic acid than in 0.001M for 24 hours, for zinc phosphate cement (ZP) the rate was greatest (5.4%) in 0.001M lactic acid, and amalgam least (0.01%). 6. The Zn concentration of restorative material with Z.P.C base was greater in 0.01M lactic acid than in 0.001M lactic acid.

  • PDF

Citrate Complexes of Manganese, Zinc and Cobalt in Aqueous, Ethanol-Water and Acetone-Water Solutions (수용액, 에탄올-물 및 아세톤-물 혼합용매 내에서의 망간, 아연 및 코발트의 시트르산 착물)

  • Choi, Sang-Up;Park, Dong-Hwan
    • Journal of the Korean Chemical Society
    • /
    • v.14 no.1
    • /
    • pp.91-96
    • /
    • 1970
  • Formation of the complexes of manganese, zinc and cobaltous ions with citrate ions in aqueous, ethanol-water (20% by volume) and acetone-water (20% by volume) solutions was studied at room temperature by the equilibrium exchange technique. The pH of the solutions was controlled to 7.0-7.4, and the ionic strength of the solutions was kept at approximately 0.10. The results of the present study indicated that both $Mn^{++}\;and\;Zn^{++}$ formed one to one citrate-compexes, [M Cit]$^-$, in all the solvent systems examined, and that $Co^{++}$ formed one to one citrate-complex in aqueous solution but formed both one to one citrate-complex, [Co Cit]$^-$, and one to two citrate-complex, $[Co\;Cit_2]^{4-}$, in the mixed solvent systems mentioned above. It was also observed that the citrate-complexes of the transition metals examined were more stable in the mixed solvent systems than in water.

  • PDF

DFT Calculations for the Hydrogen Transfer Reaction in Bis(μ-oxo)dicopper-enzyme (DFT방법을 이용한 Bis(μ-oxo)dicopper-enzyme의 수소이동반응 연구)

  • Park, Ki-soo;Kim, Yong-Ho
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.5
    • /
    • pp.499-504
    • /
    • 2009
  • Metals have often played important roles to some enzymatic reactions that are essential to biological processes. Therefore many scientists have studied the reaction mechanisms of catalytic reactions in metaloenzymes for many years. Methane MonoOxygenase (MMO) is an enzyme that oxidize methane to methyl alcohol. Recently Tolman et al. studied a model reaction for MMO, which is a hydroxide transfer reaction in Bis-($\mu$-oxo)-dicopper complex, and suggested several possible mechanisms. Later a two-step mechanism, which is hydrogen transfer followed by hydroxide rebound, was proposed from theoretical studies. In this study we calculated the reactant, product, and the transition state structures, and energetics of the first hydrogen transfer reaction using various DFT methods including recently developed the MO6 family of DFT, namely, MO6, MO6L, and MO6-2X. We found that the M06/6-31G(d,p)/LANL2DZ method reproduce the experimental XRD structure of reactants very well. The TS structures, barrier heights, and reaction energies depend very much on the size of the basis sets.

Use of Adaptive Meshes in Simulation of Combustion Phenomena

  • Yi, Sang-Chul;Koo, Sang-Man
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1996.06b
    • /
    • pp.285-309
    • /
    • 1996
  • Non oxide ceramics such as nitrides of transition metals have shown significant potential for future economic impact, in diverse applications in ceramic, aerospace and electronic industries, as refractory products, abrasives and cutting tools, aircraft components, and semi-conductor substrates amid others. Combustion synthesis has become an attractive alternative to the conventional furnace technology to produce these materials cheaply, faster and at a higher level of purity. However he process os highly exothermic and manifests complex dynamics due to its strongly non-linear nature. In order to develop an understanding of this process and to study the effect of operational parameters on the final outcome, numerical modeling is necessary, which would generated essential knowledge to help scale-up the process. the model is based on a system of parabolic-hyperbolic partial differential equations representing the heat, mass and momentum conservation relations. The model also takes into account structural change due to sintering and volumetric expansion, and their effect on the transport properties of the system. The solutions of these equations exhibit steep moving spatial gradients in the form of reaction fronts, propagating in space with variable velocity, which gives rise to varying time scales. To cope with the possibility of extremely abrupt changes in the values of the solution over very short distances, adaptive mesh techniques can be applied to resolve the high activity regions by ordering grid points in appropriate places. To avoid a control volume formulation of the solution of partial differential equations, a simple orthogonal, adaptive-mesh technique is employed. This involves separate adaptation in the x and y directions. Through simple analysis and numerical examples, the adaptive mesh is shown to give significant increase in accuracy in the computations.

  • PDF

Adiabatic Demagnetization Cooling Technique (단숙 소자화 방법에 의한 냉동기술)

  • 이일수
    • Journal of the Korean Magnetics Society
    • /
    • v.8 no.5
    • /
    • pp.317-332
    • /
    • 1998
  • The adiabatic nuclear demagnetization cooling technique has reduced the lowest accessible temperature to the regime of microkelvin, and consequently led to a large expansion in microkelvin physics such as solid and liquid $^{3}He$, superconductivity of noble metals, spin glass transition, and nuclear magnetism. Our ability to reach temperature in microkelvin regime has greatly facilitated by the developments of dilution refrigerator and superconductivity magnet. It is appropriate to divide nuclear demagnetization cooling into two categories; those in which only the nuclear spin system is cooled down and those in which the lattice and conduction electrons in the refrigerant or the specimen are also cooled by the cooling power of nuclear spin system. The former cooling technique has utilized to investigate the nuclear magnetism at temperature in nanokelvin regime. The latter is widely used in studying the phenomena occurring in microkelvin regime. In this review paper, we will discuss the basic principles of nuclear demagnetization cooling and its applications. This work is supported by the Basic Science Research Institute Program under contract number BSRI-97-2404.

  • PDF

Tungsten oxide interlayer for hole injection in inverted organic light-emitting devices

  • Kim, Yun-Hak;Park, Sun-Mi;Gwon, Sun-Nam;Kim, Jeong-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.380-380
    • /
    • 2010
  • Currently, organic light-emitting diodes (OLEDs) have been proven of their readiness for commercialization in terms of lifetime and efficiency. In accordance with emerging new technologies, enhancement of light efficiency and extension of application fields are required. Particularly inverted structures, in which electron injection occurs at bottom and hole injection on top, show crucial advantages due to their easy integration with Si-based driving circuits for active matrix OLED as well as large open area for brighter illumination. In order to get better performance and process reliability, usually a proper buffer layer for carrier injection is needed. In inverted top emission OLED, the buffer layer should protect underlying organic materials against destructive particles during the electrode deposition, in addition to increasing their efficiency by reducing carrier injection barrier. For hole injection layers, there are several requirements for the buffer layer, such as high transparency, high work function, and reasonable electrical conductivity. As a buffer material, a few kinds of transition metal oxides for inverted OLED applications have been successfully utilized aiming at efficient hole injection properties. Among them, we chose 2 nm of $WO_3$ between NPB [N,N'-bis(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine] and Au (or Al) films. The interfacial energy-level alignment and chemical reaction as a function of film coverage have been measured by using in-situ ultraviolet and X-ray photoelectron spectroscopy. It turned out that the $WO_3$ interlayer substantially reduces the hole injection barrier irrespective of the kind of electrode metals. It also avoids direct chemical interaction between NPB and metal atoms. This observation clearly validates the use of $WO_3$ interlayer as hole injection for inverted OLED applications.

  • PDF

Ohmic Contact Characteristics of p-InGaAs with Near-Noble Transition Metals of Pt and Pd (준귀금속 전이원소, Pt, Pd를 이용한 p-InGaAs의 오믹 접촉저항 특성 연구)

  • Park, Young-San;Ryu, Sang-Wan;Yu, Jun-Sang;Kim, Hyo-Jin;Kim, Sun-Hun;Kim, Jin-Hyeok
    • Korean Journal of Materials Research
    • /
    • v.16 no.10
    • /
    • pp.629-632
    • /
    • 2006
  • Electrical characteristics of Pt/Ti/Pt/Au and Pd/Zn/Pd/Au contacts to p-type InGaAs grown on an InP substrate have been characterized as a function of the doping concentration and the annealing temperature. The Pt/Ti/Pt/Au contacts produced the specific contact resistance as low as $2.3{\times}10^{-6}{\Omega}{\cdot}cm^2$, when heat-treated at an annealing temperature of $400^{\circ}C$. Comparison of the Pt/Ti/Pt/Au and Ti/Pt/Au contacts showed that the first Pt layer plays an important role in reducing the contact resistivity probably by lowering energy barrier at the metal-semiconductor interface. For the Pd/Zn/Pd/Au contacts, the contact resistivity remained virtually unchanged with increasing annealing temperature. The specific contact resistivity as low as $4.7{\times}10^{-6}{\Omega}{\cdot}cm^2$ was obtained. The results indicate that the Pt/Ti/Pt/Au and Pd/Zn/Pd/Au schemes could be potentially important for the fabrication of InP-based optoelectronic devices, such as photodetector and optical modulator.

A Research Trend on Diaphragm Membranes Alkaline Water Electrolysis System (알칼리 수전해용 격리막 기술 연구동향)

  • Im, Kwang Seop;Son, Tae Yang;Jeong, Ha Neul;Kwon, Dong Jun;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.31 no.2
    • /
    • pp.133-144
    • /
    • 2021
  • Alkaline water electrolysis system is the oldest technology among various hydrogen production processes to produce green hydrogen with the least amount of greenhouse gas generated. Alkaline water electrolysis (AWE) system is used in alkaline atmosphere condition. In comparison to polymer electrolyte membrane water electrolysis (PEMWE), this system can utilize stable transition metals such as nickel, cobalt, and silver, as electrode catalysts. AWE is relatively inexpensive, and can easily be scaled up to large scale. The system is a mature technology, as it has been in operation since the beginning of the 20th century in MW-scale for hydrogen generation, and there are currently more than 20 commercial manufacturers. In this review, the basic principles of AWE, along with catalysts, electrodes, and diaphragm membranes, are summarized. Particularly, the research and development trends of the diaphragm membrane unit, which is the core component of an AWE, are discussed in detail.

Material Life Cycle Assessment of Mg-CaO-10 wt.% MWCNT Hydrogen Storage Composites (수소저장용 Mg-CaO-10 wt.% MWCNT 복합체의 물질 전과정 평가)

  • HAN, JEONG-HEUM;LEE, YOUNG-HWAN;YU, JAE-SEON;HONG, TAE-WHAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.3
    • /
    • pp.220-226
    • /
    • 2019
  • Magnesium hydride has a high hydrogen storage capacity (7.6 wt.%), and is cheap and lightweight, thus advantageous as a hydrogen storage alloy. However, Mg-based hydrides undergo hydrogenation/dehydrogenation at high temperature and pressure due to their thermodynamic stability and high oxidation reactivity. MWCNTs exhibit prominent catalytic effect on the hydrogen storage properties of $MgH_2$, weakening the interaction between Mg and H atoms and reducing the activation energy for nucleation of the metal phase by co-milling Mg with carbon nanotubes. Therefore, it is suggested that combining transition metals with carbon nanotubes as mixed dopants has a significant catalytic effect on the hydrogen storage properties of $MgH_2$. In this study, Material life cycle evaluation was performed to analyze the environmental impact characteristics of Mg-CaO-10 wt.% MWCNTs composites manufacturing process. The software of material life cycle assessment (MLCA) was Gabi 6. Through this, environmental impact assessment was performed for each process.