• 제목/요약/키워드: Transition Section

검색결과 188건 처리시간 0.022초

Aerodynamic effects of subgrade-tunnel transition on high-speed railway by wind tunnel tests

  • Zhang, Jingyu;Zhang, Mingjin;Li, Yongle;Fang, Chen
    • Wind and Structures
    • /
    • 제28권4호
    • /
    • pp.203-213
    • /
    • 2019
  • The topography and geomorphology are complex and changeable in western China, so the railway transition section is common. To investigate the aerodynamic effect of the subgrade-tunnel transition section, including a cutting-tunnel transition section, an embankment-tunnel transition section and two typical scenarios for rail infrastructures, is selected as research objects. In this paper, models of standard cutting, embankment and CRH2 high-speed train with the scale of 1:20 were established in wind tunnel tests. The wind speed profiles above the railway and the aerodynamic forces of the vehicles at different positions along the railway were measured by using Cobra probe and dynamometric balance respectively. The test results show: The influence range of cutting-tunnel transition section is larger than that of the embankment-tunnel transition section, and the maximum impact height exceeds 320mm (corresponding to 6.4m in full scale). The wind speed profile at the railway junction is greatly affected by the tunnel. Under the condition of the double track, the side force coefficient on the leeward side is negative. For embankment-tunnel transition section, the lift force coefficient of the vehicle is positive which is unsafe for operation when the vehicle is at the railway line junction.

The appropriate shape of the boundary transition section for a mountain-gorge terrain model in a wind tunnel test

  • Hu, Peng;Li, Yongle;Huang, Guoqing;Kang, Rui;Liao, Haili
    • Wind and Structures
    • /
    • 제20권1호
    • /
    • pp.15-36
    • /
    • 2015
  • Characterization of wind flows over a complex terrain, especially mountain-gorge terrain (referred to as the very complex terrain with rolling mountains and deep narrow gorges), is an important issue for design and operation of long-span bridges constructed in this area. In both wind tunnel testing and numerical simulation, a transition section is often used to connect the wind tunnel floor or computational domain bottom and the boundary top of the terrain model in order to generate a smooth flow transition over the edge of the terrain model. Although the transition section plays an important role in simulation of wind field over complex terrain, an appropriate shape needs investigation. In this study, two principles for selecting an appropriate shape of boundary transition section were proposed, and a theoretical curve serving for the mountain-gorge terrain model was derived based on potential flow theory around a circular cylinder. Then a two-dimensional (2-D) simulation was used to compare the flow transition performance between the proposed curved transition section and the traditional ramp transition section in a wind tunnel. Furthermore, the wind velocity field induced by the curved transition section with an equivalent slope of $30^{\circ}$ was investigated in detail, and a parameter called the 'velocity stability factor' was defined; an analytical model for predicting the velocity stability factor was also proposed. The results show that the proposed curved transition section has a better flow transition performance compared with the traditional ramp transition section. The proposed analytical model can also adequately predict the velocity stability factor of the wind field.

A New Broadband Microstrip-to-SIW Transition Using Parallel HMSIW

  • Cho, Dae-Keun;Lee, Hai-Young
    • Journal of electromagnetic engineering and science
    • /
    • 제12권2호
    • /
    • pp.171-175
    • /
    • 2012
  • In this work, a new microstrip-to-substrate integrated waveguide (SIW) transition using the parallel half-mode substrate integrated waveguide (HMSIW) is proposed. The proposed transition consists of three sections : a microstrip, parallel HMSIWs, and an SIW. By inserting the parallel HMSIWs section between the microstrip section and the SIW section, the proposed transition can improve the return loss characteristics of the near cut-off frequency because the HMSIWs section has a lower cut-off frequency than the SIW section (8.6 GHz). The lower cut-off frequency is achieved through gradual electromagnetic field mode changes for a low reflection. The measured return loss is less than 20 dB in the of 9.1~16.28 GHz freqeuncy range for the back-to-back transition. The measured insertion loss is within 1.6 dB for the back-to-back transition. The proposed transition is expected to play an important role in wideband SIW circuits fed by a microstrip.

강체전차선로 이행구간 Heavy Simple Catenary 적용을 위한 압상량 고찰 (A Study on the Uplift for Applying of Heavy Simple Catenary System in a Overhead Rigid Conductor Rail Transition Section)

  • 김완일;박원찬;이재봉;김재문
    • 전기학회논문지
    • /
    • 제67권5호
    • /
    • pp.688-694
    • /
    • 2018
  • The transition section of the overhead rigid conductor rail (ORCR) consists of a direct induction device and a limit point to prevent the power supply failure and failure of the electric railway vehicle pantograph due to the difference of the uplift in the catenary line. In T-Bar transition section, a twin simple catenary is mostly installed between the overhead catenary system (OCS) in the ground section and the ORCR in the underground section. In this paper, we compare and analyze the possibility of replacing the twin simple catenary with heavy simple catenary. The reliability of numerical analysis results was confirmed by comparing field test with numerical results. Comparing the numerical results of the twin simple catenary with the heavy simple catenary in the transition section, the difference uplift is 5.9[mm] on average. When applying heavy simple catenary instead of twin simple catenary, the slight difference of uplift can be compensated by adjusting the height of hanger-ear or support bracket.

강체 전차선로이행구간 고속화 방안 연구 (A Study on Speed-up of a Transition Section Between Overhead Catenary and Rigid Conductor System)

  • 이기원;최태수;조용현;박영;전효찬;최규형
    • 전기학회논문지
    • /
    • 제67권3호
    • /
    • pp.467-473
    • /
    • 2018
  • R-Bar(Overhead Rigid Conductor system) is being developed for the high-speed in Europe because it has an advantage of cross section area reduction of tunnel compared with OCS (Overhead Catenary Line). Because there are lots of underground sections and mountains in korea, it is necessary to develop the R-Bar for a high-speed line. In this study, a method on speed-up of transition section between OCS and R-Bar is proposed. The commercial program, DAFUL, is used to predict a dynamic characteristics between Overhead Line and pantograph. The program is evaluated according to EN 50318 which is the European Norm for evaluation of the program. Using the evaluated modeling and method, a method for the max. speed of 250 km/h of transition section is proposed.

간선도로 좌곡선부 전후구간 수막현상 방지를 위한 종·횡단경사 조합 적용방안 (A Method of Compounding Application of Longitudinal Grade and Superelevation on Left Curved Section in Arterial for Preventing Hydroplaning)

  • 정지환;오흥운
    • 한국도로학회논문집
    • /
    • 제17권1호
    • /
    • pp.105-118
    • /
    • 2015
  • PURPOSES : This study aims to evaluate the road safety of the super-elevation transition section of a left turn curve and suggest the minimum longitudinal grade of a super-elevation transition section to be used before and after a left curved section. METHODS : We evaluated the road condition by means of the safety-criterion-evaluation method involving side friction factors, and then solve the problem by introducing the minimum longitudinal grade criterion based on conditions described in the hydraulics literature. RESULTS : It was calculated that when a road satisfies hydroplaning conditions, the difference between side friction assumed and side friction demanded is less than -0.04. In this case, the safety criterion for the condition is unsatisfied. Conversely, when a road is in a normal state under either wet or dry conditions, it was calculated that the difference between side friction assumed and side friction demanded is more than 0.01. Thus, the safety criterion for this condition is found to be satisfied. After adjusting the minimum longitudinal grade applied to a super-elevation transition section, the hydroplaning condition can be eliminated and the safety criterion can be met for all sections. CONCLUSIONS : It is suggested that a minimum longitudinal grade should be provided on super-elevation transition sections in order to prevent hydroplaning.

3차원 수치해석을 통한 개착터널내 단면변화구간의 손상미케니즘 연구 (A study on damage mechanism of transition section in cut and cover tunnel using 3 dimensional numerical analysis)

  • 박재영;손정훈;박광림;오영석
    • 한국터널지하공간학회 논문집
    • /
    • 제14권6호
    • /
    • pp.653-666
    • /
    • 2012
  • 본 연구는 터널의 단면변화구간에서 발생한 손상 미케니즘에 대하여 이루어졌다. 이를 위해 단면변화 구간을 대상으로 다양한 현장조사 및 시험을 실시하였으며, 이를 바탕으로 2차원 및 3차원 수치해석을 수행하였다. 현장조사 및 시험 결과, 슬래브 손상에 대한 직접적인 원인을 찾을 수 없었으며, 2차원 수치해석을 수행한 결과 기준 안전율(1.0)을 만족하는 것으로 분석되었다. 추가로 수행한 3차원 수치해석 결과, 기둥 간격의 변화에 따라 슬래브 휨응력 변화를 전달시키지 못해 손상이 발생한 것으로 분석되었다. 보강을 위해 터널내 기둥을 추가하는 방안을 적용하였으며 그 결과, 상부 슬래브 비틀림 형상이 완화되어 보강 효과를 확인할 수 있었다. 단면 변화 구간의 경우 2차원 뿐만 아니라, 3차원으로 영향범위를 고려하여 설계에 반영한다면, 합리적이고 안정적으로 건설 및 유지관리가 가능할 것으로 판단된다. 추후에는 개착터널내 단면변화 구간에서 구조물에 영향을 최소화할 수 있는 보강방안에 대해 연구를 계속하고자 한다.

A simple method for estimating transition locations on blade surface of model propellers to be used for calculating viscous force

  • Yao, Huilan;Zhang, Huaixin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제10권4호
    • /
    • pp.477-490
    • /
    • 2018
  • Effects of inflow Reynolds number (Re), turbulence intensity (I) and pressure gradient on the transition flow over a blade section were studied using the ${\gamma}-Re{\theta}$ transition model (STAR-CCM+). Results show that the $Re_T$ (transition Re) at the transition location ($P_T$) varies strongly with Re, I and the magnitude of pressure gradient. The $Re_T$ increases significantly with the increase of the magnitude of favorable pressure gradient. It demonstrates that the $Re_T$ on different blade sections of a rotating propeller are different. More importantly, when there is strong adverse pressure gradient, the $P_T$ is always close to the minimum pressure point. Based on these conclusions, the $P_T$ on model propeller blade surface can be estimated. Numerical investigations of pressure distribution and transition flow on a propeller blade section prove these findings. Last, a simple method was proposed to estimate the $P_T$ only based on the propeller geometry and the advance coefficient.

Experimental study on modified low liquid limit silt for abutment backfill in bridge-embankment transition section

  • Shu-jian Wang;Yong Sun;Zhen-bao Li;Kai Xiao;Wei Cui
    • Geomechanics and Engineering
    • /
    • 제32권6호
    • /
    • pp.601-613
    • /
    • 2023
  • Low liquid limit silt, widely distributed in the middle and down reaches of Yellow River, has the disadvantages of poor grading, less clay content and poor colloidal activity. It is very easy to cause vehicle jumping at the bridge-embankment transition section when the low liquid limit silt used as the backfill at the abutment back. In this paper, a series of laboratory tests were carried out to study the physical and mechanical properties of the low liquid limit silt used as back filling. Ground granulated blast furnace slag (GGBFS) was excited by active MgO and hydrated lime to solidify silt as abutment backfill. The optimum ratio of firming agent and the compaction and mechanical properties of reinforced soil were revealed through compaction test and unconfined compressive strength (UCS) test. Scanning electron microscope (SEM) test was used to study the pore characteristics and hydration products of reinforced soil. 6% hydrated lime and alkali activated slag were used to solidify silt and fill the model of subgrade respectively. The pavement settlement regulation and soil internal stress-strain regulation of subgrade with different materials under uniformly distributed load were studied by model experiment. The effect of alkali activated slag curing agent on curing silt was verified. The research results can provide technical support for highway construction in silt area of the Yellow River alluvial plain.

Offset Microstrip을 이용한 Coplanar Waveguide-to-Microstrip Right-Angled 전이의 특성 개선 (Improved Coplanar Waveguide-to-Microstrip Right-Angled Transition using an Offset Microstrip Section)

  • 이맹열;이해영
    • 한국전자파학회논문지
    • /
    • 제13권5호
    • /
    • pp.445-450
    • /
    • 2002
  • 본 논문에서는 CPW(Coplanar waveguide)-to-microstrip right-angled 전이 구조에 대해서 해석하였다. 일반적으로 비대칭적인 CPW-to-microstrip 전이 구조는 불연속점에서 발생한 slot모드로 인해 심각한 공진이 발생한다. 공진 발생을 억제하기 위해서 일반적으로 많이 사용하는 air-bridge는 공진 발생을 근본적으로 제거시키지 못하고, 단지 공진 주파수만 이동시킨다. 따라서, 본 논문에서는 공진 발생을 제거하기 위해 offset microstrip을 사용하는 구조를 제안하였다. 제안된 구조는 불연속점에서 대칭을 유지함으로써 공진 발생 원인을 근본적으로 제거한 구조로 회로의 직접도가 높은 다층 기판에서 효과적으로 사용될 수 있을 것으로 기대된다.