• Title/Summary/Keyword: Transition Regime

Search Result 221, Processing Time 0.027 seconds

Chaotic Thermal Convection in a Wide-Gap Horizontal Annulus : Pr=0.1 (넓은 수평 환형 공간에서의 혼동 열 대류 : Pr=0.1)

  • 유주식;엄용균
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.2
    • /
    • pp.88-95
    • /
    • 2001
  • Transition to chaotic convection is investigated for natural convection of a fluid with Pr=0.1 in a wide-gap horizontal annuls. The unsteady two-dimensional stream-function-vorticity equation is solved with finite difference method. As the Rayleigh number is increased, the steady 'downward flow' bifurcates to a time-periodic flow with a fundamental frequency, and afterwards a period-doubling bifurcation occurs. As the Rayleigh number is increased further, the chaotic flow regime is reached after a sequence of successive Hopf bifurcation to quasi-periodic and chaotic flow regimes. The route to chaos shows the Ruelle-Takens-Newhouse scenario. The flow of chaotic regime displays complex coalescence and separation of eddies in the side and lower region of the annulus.

  • PDF

A Multidisciplinary Frame for Studying Democratic Shifts in Southeast Asia: Mixing Politics, Sociology And Psychology Across Historical Time

  • Montiel, Cristina Jayme
    • SUVANNABHUMI
    • /
    • v.7 no.2
    • /
    • pp.57-78
    • /
    • 2015
  • Southeast Asia has been a showcase for democratic transitions in the past 30 years. This paper proposes a conceptual lens for studying political shifts in the Southeast Asian region. The argumentative storyline follows two fundamental propositions about democratic transitions. My first proposition is that during democratic transitions, human phenomena arise on nested analytical layers namely the global arena, the state, prodemocracy movements, and individuals. Each layer is conventionally studied by international relations, political science, sociology, and psychology respectively. I propose a multidisciplinary lens that transverses all these analytical layers. A second proposition is that during political shifts, social conditions are historically-situated. Historicity is anchored on stages of democratization, namely the authoritarian regime, toppling the regime, power shift, state building, and nation building. This paper describes a 4 × 5 matrix (analytical layer × historical stage) that may guide a regional agenda on the empirical study of democratic transitions in the Southeast Asian region. It likewise gives examples of research findings in Philippine-based studies that have already begun to provide empirical data about segments of this research matrix.

  • PDF

A Microscopic Analysis on the Fundamental Diagram and Driver Behavior (교통기본도와 운전자 행태에 대한 미시적 분석)

  • Kim, Taewan
    • International Journal of Highway Engineering
    • /
    • v.14 no.6
    • /
    • pp.183-190
    • /
    • 2012
  • PURPOSES : The fundamental diagram provides basic information necessary in the analysis of traffic flow and highway operation. When traffic flow is congested, the density-flow points in the fundamental diagram are widely scattered and move in a stochastic manner. This paper investigates the pattern of density-flow point transitions and identifies car-following behaviors underlying the density-flow transitions. METHODS : From a microscopic analysis of 722 fundamental diagrams of NGSIM data, a total of 20 transition patterns of fundamental diagrams are identified. Prominent features of the transition patterns are explained by the behavior of the leader and follower. RESULTS : It is found out that the average speed and the speed difference between the leader and the follower critically determine the density-flow transition pattern. The density-flow path is very sensitive to the values of vehicle speed and spacing especially at low speed and high density such that most fluctuations in the fundamental diagram in the congested regime is due to the noise of speed and spacing variations. CONCLUSIONS : The result of this study suggests that the average speed, the speed difference between the leader and the follower, and the random variations of speed and spacing are dominant factors that explain the transition patterns of a fundamental diagram.

RELATIONSHIP BETWEEN RADIATION INDUCTED YIELD STRENGTH INCREMENT AND CHARPY TRANSITION TEMPERATURE SHIFT IN REACTOR PRESSURE VESSEL STEELS OF KOREAN NUCLEAR POWER PLANTS

  • Lee, Gyeong-Geun;Lee, Yong-Bok;Kwon, Jun-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.44 no.5
    • /
    • pp.543-550
    • /
    • 2012
  • The decrease in the fracture toughness of ferritic steels in a reactor pressure vessel is an important factor in determining the lifetime of a nuclear power plant. A surveillance program has been in place in Korea since 1979 to assess the structural integrity of RPV steels. In this work, the surveillance data were collected and analyzed statistically in order to derive the empirical relationship between the embrittlement and strengthening of irradiated reactor pressure vessel steels. There was a linear relationship between the yield strength change and the transition temperature shift change at 41 J due to irradiation. The proportional coefficient was about $0.5^{\circ}C$/MPa in the base metals (plate/forgings). The upper shelf energy decrease ratio was non-linearly proportional to the yield strength change, and most of the data lay along the trend curve of the US results. The transition regime temperature interval, ${\Delta}T_T$, was less than the US data. The overall change from irradiation was very similar to the US results. It is expected that the results of this study will be applied to basic research on the multiscale modeling of the irradiation embrittlement of RPV materials in Korea.

Adiabatic Demagnetization Cooling Technique (단숙 소자화 방법에 의한 냉동기술)

  • 이일수
    • Journal of the Korean Magnetics Society
    • /
    • v.8 no.5
    • /
    • pp.317-332
    • /
    • 1998
  • The adiabatic nuclear demagnetization cooling technique has reduced the lowest accessible temperature to the regime of microkelvin, and consequently led to a large expansion in microkelvin physics such as solid and liquid $^{3}He$, superconductivity of noble metals, spin glass transition, and nuclear magnetism. Our ability to reach temperature in microkelvin regime has greatly facilitated by the developments of dilution refrigerator and superconductivity magnet. It is appropriate to divide nuclear demagnetization cooling into two categories; those in which only the nuclear spin system is cooled down and those in which the lattice and conduction electrons in the refrigerant or the specimen are also cooled by the cooling power of nuclear spin system. The former cooling technique has utilized to investigate the nuclear magnetism at temperature in nanokelvin regime. The latter is widely used in studying the phenomena occurring in microkelvin regime. In this review paper, we will discuss the basic principles of nuclear demagnetization cooling and its applications. This work is supported by the Basic Science Research Institute Program under contract number BSRI-97-2404.

  • PDF

What determines the Electricity Price Volatility in Korea? (전력계통한계가격 변동성 결정요인 분석: 베이지안 변수선택 방법)

  • Lee, Seojin;Kim, Young Min
    • Environmental and Resource Economics Review
    • /
    • v.31 no.3
    • /
    • pp.393-417
    • /
    • 2022
  • Using hourly SMP data from 2016 to 2020, this paper measures the weekly realized volatility and investigates the main force of its determinants. To this end, we extend the Bayesian variable selection by incorporating the regime-switching model which identifies important variables among a large number of predictors by regimes. We find that the increase in coal and nuclear generation, as well as solar power, reinforce the SMP volatility in both high volatility and low volatility regime. In contrast the increase in gas generation and gas price decrease SMP volatility when SMP volatility is high. These results suggest that the expansion of renewable energy according to 2050 Carbon Neutrality or energy transition policies increases SMP volatility but the increase in the gas generation or reduction of coal generation might offset its impact.

Experimental research on flow regime and transitional criterion of slug to churn-turbulent and churn-turbulent to annular flow in rectangular channels

  • Qingche He;Liang-ming Pan;Luteng Zhang;Wangtao Xu;Meiyue Yan
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.3973-3982
    • /
    • 2023
  • As for two-phase flow in rectangular channels, the flow regimes especially like churn-turbulent and annular flow are significant for the physical problem like Countercurrent Flow Limitation (CCFL). In this study, the rectangular channels with cross-sections of 4 × 66 mm, 6 × 66 mm, 8 × 66 mm are adopted to investigate the flow regimes of air-water vertical upward two phase flow under adiabatic condition. The gas and liquid superficial velocities are 0 ≤ jg ≤ 20m/s and 0.25 ≤ jf ≤ 3m/s respectively which covering bubbly to annular flow. The flow regimes are identified by random forest algorithm and the flow regime maps are obtained. As the results, the transitional void fraction from slug to churn turbulent flow fluctuate from 0.47 to 0.58 which is significantly affected by the dimensional size of channel and flow rate. Besides, the void fraction at transitional points from churn-turbulent (slug) to annular flow are 0.66-0.67, which are independent with the gap size. Furthermore, a new criteria of slug to churn-turbulent flow is established in this study. In addition, by introducing the interfacial force model, the criteria of churn-turbulent (slug) flow to annular flow is verified.

Experimental Study on Brownian Coagulation in the Transition Regime (전이영역에서의 Brown 응집에 관한 실험적 연구)

  • Kim Dae-Seong;Lee Gyu-Won
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.05b
    • /
    • pp.355-356
    • /
    • 2003
  • Coagulation is a process whereby particles collide with one another due to their relative motion, and adhere to form large particles. Coagulation caused by the random Brownian motion of particles is called Brownian coagulation. Many properties, such as light scattering, electrostatic charges, toxicity, as well as physical processes, including diffusion, condensation and thermophoresis depend strongly on their size distribution. Therefore, Brownian coagulation is substantially important in atmospheric science, combustion technology, inhalation toxicology and nuclear safety analysis. (omitted)

  • PDF

Effects of Thermal Fluctuations on Vortices in a Layered Superconductor (층 구조를 갖는 초전도체내의 자기 다발선계에서의 열적 요동의 효과)

  • Yeo, Joon-Hyun
    • 한국초전도학회:학술대회논문집
    • /
    • v.9
    • /
    • pp.22-25
    • /
    • 1999
  • We apply the nonperturbative parquet approximation method, which was previously used to study the effect of thermal fluctuations in two-dimensional vortex systems, to vortices in a layered superconductor. We set up the parquet equations for the Lawrence-Doniach model and present two different numerical methods to solve them. The results for a superconductor consisting of two and four layers are also discussed in connection with an observed first order transition line in the vortex liquid regime.

  • PDF

Mott-Insulator Metal Switching Technology for New Concept Devices (신개념 스위칭 소자를 위한 모트-절연체 금속 전이 기술)

  • Kim, H.T.;Roh, T.M.
    • Electronics and Telecommunications Trends
    • /
    • v.36 no.3
    • /
    • pp.34-40
    • /
    • 2021
  • For developing a switching device of a new concept that cannot be implemented with a semiconductor device, we introduce the Mott insulator-metal transition (IMT) phenomenon occurring out of the semiconductor regime, such as the temperature-driven IMT, the electric-field or voltage-driven IMT, the negative differential resistance (NDR)-IMT switching generated at constant current, and the NDR-based IMT-oscillation. Moreover, the possibilities of new concept IMT switching devices are briefly explained.