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Effects of Thermal Fluctuations on Vortices in a Layered
Superconductor
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We apply the nonperturbative parquet approximation method, which. was previously
used to study the effect of thermal fluctuations in two-dimensional vortex systems, to
vortices in a layered superconductor. We set up the parquet equations for the
Lawrence-Doniach model and present two different numerical methods to solve them.
The results for a superconductor consisting of two and four layers are also discussed
in connection with an observed first order transition line in the vortex liquid regime.

1. Introduction

The phase diagram of a high temperature
superconductor in a magnetic field has been
the focus of recent theoretical and experimental
interest [1]. The mean field theory [2] predicts
that the lines of magnetic flux form a

triangular array known as the Abrikosov
lattice. Because of strong anisotropy, high
temperature and short coherence length,

thermal fluctuations in the high Tc materials
are much more effective than in the
conventional low Tc superconductors. Therefore,
in a large portion of the phase diagram, flux
lines in a high temperature superconducor are
believed to be in the vortex liquid phase
resulting from the melting of the Abrikosov
lattice. Recent experiments [3] detected. sharp
drops in the resistivity and steps in the
magnetization and the specific heat, which
were interpreted as resulting from the vortex
liquid undergoing a first order phase transition

into presumably the Abrikosov lattice as the
temperature is lowered.

Theoretical analyses on the vortex system
near the first order transition line have mainly
been based on the Lindemann criterion or
numerical simulations. We note, however, that
the Lindemann criterion is not a rigorous
thermodynamic  treatment and  numerical
simulations are known to be affected by the
boundary  conditions in  the  direction
perpendicular to the magnetic field [4,5].

It is noteworthy that a recent numerical
simulation [5] on the vortex system in a
layered superconductor produced the observed
first order transition line which disapeared at
an end point at low magnetic field. This kind
of behavior has been widely observed in
experiments and usually been attributed to the
effect of disorder. But the result of this
numerical simulation on a system without
disorder suggests that there is only one phase
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below and above the transition, namely the
vortex liquid. (The situation is much like a
gas-liquid transition) The only difference
between the two phases is the correlation
length in the vortex liquid. This is in contrast
to other numerical simulation results which use
a different boundary condition [4]. In those
cases a genuine first order transition between
the vortex liquid and the vortex crystal was
obtained.

Therefore, an analytical approach is essential
to elucidate the nature of flux lines in a
layered superconductor. The parquet
approximation [6], - which was successfully
applied to a two-dimensional vortex system, is
a nonperturbative analytic method which is
free from any finite size effect perpendicular to
the field direction. In two dimensions this
method was able to capture the growing
crystalline order developing in a vortex liquid
as the temperature is lowered [6]. In this
approximation no finite temperature phase
transition was observed in two dimensions. So
it would be interesting to see if this conclusion
changes when a layered system is considered.
In this contribution, we present the first
attempt to apply the parquet approximation
method to a vortex system in a layered
superconductor. The parquet approximation
deals with the renormalized four-point function
of the vortex system which is obtained by
summing an infinte subset of - Feynman
diagrams, the so-called parquet diagrams. As
will be explained below the extra dimension in
the parquet approximation method compared to
the two dimensional case poses considerable
difficulty in practical calculations. In this
contribution, we discuss possible numerical
methods which can be used to extract useful
physical  quantites from  the  parquet
approximation. Finally in order to show the
applicability of our methods we present the
result of these approaches for a superconductor
consisting of two and four layers, and discuss
its implication on the phase diagram of
vortices.

2. Model

Our starting point is the Lawrence-Doniach
model for a layered superconductor in a
magnetic field perpendicular to the layers. We
denote the order parameter in the n-th layer

by ¢,. The free energy is given by
F14,4') =54y | d*rl (A
+ 2 lg. ("

1 . e, 2
+ (= in v =< A

=B 16D = b (PDI]
chdz n n+1

is the layer thickness, d the layer

where d
a, B, myp and  me,
phenomenological parameters. We denote by
=1 ?[2md* = (E,/d)* the
ratio between the coherence: length &;
perpendicular to the layers and the layer

spacing. We take —é= v ><_le> as constant
and uniform.

spacing  and

dimensionless

We use the lowest Landau level (LLL)
approximation which is believed to be valid
over a large portion of the vortex liquid
regime. We expand the order parameter in
terms of the eigenstates of the covariant
derivative term and keep only the lowest
eigenvalue state. In the symmetric gauge, the
LLL  wavefunction is given by

(D= exp(— £2|d%/4) ¢ ,,(2)

yi=e¢'B/hc and ¢,(2z) is an arbitrary
analytic function of z=x+iy.

where

We calculate the various correlation functions
with respect to a partition function obtained
from the LLL free energy by using the parquet
approximation. It is a nonperturbative analytic
approximation and thus no  boundary
conditions are used in the direction
perpendicular to the magnetic field. Along the

-field, however, we consider a system consisting

of a stack of N layers, for which we impose
the periodic boundary ‘condition

e 0(2) = ¢,(2). We introduce, in a usual

way, the Fourier transform @¢_(2) of ¢,(2).
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The main quantity one calculates in the

parquet approximation is the renormalized
connected four-point function,

ql(zl) q,(Zz) 43(23)45%(24))
which can be written in terms of the

renormalized vertex function [6]

Nay.a.05; D=Iay,a29501+ a2~ a5 ; &)
Here the momentum _/; corresponds to the
two-dimensional space perpendicular to the
magnetic field and g¢; to the layer index.
Note that to the order
Nq,, qz,q3;_/;) ==I"B(_l§), the bare vertex which

is independent of the momenta across the
layers.

lowest

In order to make a resummation over all
parquet  diagrams, ‘we note that the
contributions to [" can be decomposed into a
totally irreducible part and a reducible part
which in turn can be written as the sum of
II; (i=1,2,3) representing the
contributions from three different channels
which can be written in terms of irreducible
vertices /A; and [’ . (A detailed discussion on
the diagrammatic decomposition and a
construction of the parquet equations can be
found in [6]) The parquet approximatien we
employ here corresponds to neglecting in the
totally irreducible -vertex all the -higher order

(0( 84 )] diagrams except the bare vertex
function I'B(_l;).

three parts -

Using the solutions to the above equations
one can calculate several interesting physical
quantities. Among them we focus on the
structure factor, which is the measure of
correlation between vortices in a vortex liquid.
It is calculated from

Xnen (=7 =P A9 (I
=g (DI2Y (P
The structure factor Am(—/;) used in this work
is then defined by

4 (k) ( dOB kZ/ZyZIdZRei—JE-—ﬁ m(—R’)

We also . calculate the Abrikosov ratio fS4

defined as

g (A

RUACY

We soive the parquet equations numerically.
The main numerical difficulty arising from the

addition of an extra dimension is that [” and
A; now involve the three extra momentum

indices, which will require a large amounts of
computer memory when the number of layers
becomes large. One approach we take is to
start from some initial functions, A; I’ and

update these functions iteratively using the
parquet equations. At high temperatures, we
find that the iteration converges very quickly,
but as the temperature is lowered the
convergence of this iteration gets slower, and
furthermore the - results obtained at a closeby
temperature have to used as the initial values
to get good convergence. For the two
dimensional problem it was noticed that the
direct iteration approach always produces a
slower convergence compared to the matrix
inversion method, for which the parquet
equations, viewed - as  Fredholm integral
equations of the second kind, are solved
numerically by inverting the kernel and by
iteratively updating the kernel by using the
remaining parquet equations. In the present
case the matrix inversion cannot be applied in
a straightforward way since they are not in the
form of a product of two matrices.

We note, however, that this can in fact be
achieved so that the matrix inversion method
can be applied in the layered case too. We
first cast the parquet equations into the form
involving the layer indices instead of the
momenta. We find that the parquet equations
become much simpler than those written with
respect fo ‘the layer momenta. (Detailed
expressions of the parquet equations in terms
of the layer indices can be found in [7].) More
importantly, they are in the form of a product
of two (big) matrices.

Now we solve the parquet equations using
the matrix inversion method. As expected we
find that the convergence of the iteration is
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quicker than the direct iteration method. One
shortcoming of this approach, however, is that
it involves the inversion of matrices of very
big size. In our model we are in general

dealing with (MN? x MN®) matrices where M

is the number of grid points in _/et space.
Usually one has to use sufficiently large M in
order to capture the growing peaks in the
structure factor as the temperature is lowered.
Therefore when the number of layers N
becomes large the numerical inversion method
requires a large amount of computer memory
and CPU time.

For two-layer and four-layer systems, we
find that both methods yield satisfactory results
within reasonable amount of computing time.
For example for M=300, one iteration for both
cases takes around 5 minutes on a DEC
workstation. For the calculation of the system
with large N, a combination of both methods
must be used. We calculate the structure factor
for the two-layer and four-layer systems for
various values of the temperature and the
applied - field. We observe that sharp peaks
develop, as the we move down below the

H , line, near the value of the first reciprocal

lattice vector of a triangular lattice, which
indicates the growing crystalline order in the
vortex liquid. We can also see the inter-layer
correlation is getting larger as the temperature
is lowered. In the two-layer system, within the
temperature and field range we have studied,
we do not see any finite temperature phase

transition. In the four-layer system, however,
we observe first order transitions in the form .

of small steps in physical quantities such as
the magnetization and the Abrikosov ratio S4.

We detect instabilities in the solution of the
parquet equations when these transitions occur.
The size of steps gets smaller as we increase
the inter-layer coupling, which corresponds. to
decreasing the applied field in terms of LLL
scaling variables. The first order transition line
eventually ends at Jow fields at an critical end
point. This- behavior is analogous to the result
obtained in the simulaton in [5], and is
consistent with the picture suggested in [5]
where the first order transtion line only
separates two vortex liquid phases with

5] A. K Kienappel

different correlation lengths and does not
correspond to the melting of a vortex lattice.

3. Conclusion

To summarize we presented the parquet
equations for the Lawrence-Doniach model and
discussed two possible numerical methods for
solving them. While, in the two-layer system,
we do not see any kind of transition, we see
first order transitions and a critical end point
in the four-layer system. This is in agreement
with the simulation result [5] which indicates
that only the vortex liquid phase exists above
and below the first order transtion line. As
emphasized above the parquet approximation is
a very powerful tool to study the phase
diagram  of vortices in a layered
superconductor. In order to elucidate the
nature of the vortex liquid phase we need to
consider a system with more layers, which is
left to the future work [8]. We can then extract
useful information on the nature of phase
transitions in the vortex liquid using a kind of
finite size scaling. For this we have to make
an appropriate use of the two methods

presented here.
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