• Title/Summary/Keyword: Transition Regime

Search Result 221, Processing Time 0.028 seconds

Low-fidelity simulations in Computational Wind Engineering: shortcomings of 2D RANS in fully separated flows

  • Bertani, Gregorio;Patruno, Luca;Aguera, Fernando Gandia
    • Wind and Structures
    • /
    • v.34 no.6
    • /
    • pp.499-510
    • /
    • 2022
  • Computational Wind Engineering has rapidly grown in the last decades and it is currently reaching a relatively mature state. The prediction of wind loading by means of numerical simulations has been proved effective in many research studies and applications to design practice are rapidly spreading. Despite such success, caution in the use of simulations for wind loading assessment is still advisable and, indeed, required. The computational burden and the know-how needed to run high-fidelity simulations is often unavailable and the possibility to use simplified models extremely attractive. In this paper, the applicability of some well-known 2D unsteady RANS models, particularly the k-ω SST, in the aerodynamic characterization of extruded bodies with bluff sections is investigated. The main focus of this paper is on the drag coefficient prediction. The topic is not new, but, in the authors' opinion, worth a careful revisitation. In fact, despite their great technical relevance, a systematic study focussing on sections which manifest a fully detached flow configuration has been overlooked. It is here shown that the considered 2D RANS exhibit a pathological behaviour, failing to reproduce the transition between reattached and fully detached flow regime.

Improvements to the RELAP5/MOD3 Reflood Model and Assessment (RELAP5 /MOD3 재관수 모델의 개선 및 평가)

  • Chung, B.D.;Lee, Y.J.;Park, C.E.;Choi, C.J.;Hwang, T.S.
    • Nuclear Engineering and Technology
    • /
    • v.26 no.2
    • /
    • pp.265-276
    • /
    • 1994
  • Several improvements to the RELAP5/MOD3 reflood model hate been made. These improvement were made to correct deficiencies in the reflood model identified by the assessment of the RELAP5/MOD3 code against FLECHT-SEASET experiments. The improvements consist of modification of reflood wall heat transfer package and adjusting the droplet size in dispersed flow regime. The time smoothing of wall vaporization and level tracking of transition flow are also added to eliminate the pressure spikes and level oscillation during reflood process. Assessment of the improved model against FLECHT-SEASET experimental data and application of LBLOCA analysis for plant shows that the deficiencies have been corrected.

  • PDF

Numerical Investigation on detonation combustion waves of hydrogen-air mixture in pulse detonation combustor with blockage

  • Pinku Debnath;K.M. Pandey
    • Advances in aircraft and spacecraft science
    • /
    • v.10 no.3
    • /
    • pp.203-222
    • /
    • 2023
  • The detonation combustion is a supersonic combustion process follows on shock wave oscillations in detonation tube. In this paper numerical studies are carried out combined effect of blockage ratio and spacing of obstacle on detonation wave propagation of hydrogen-air mixture in pulse detonation combustor. The deflagration to detonation transition of stoichiometric (ϕ=1)fuel-air mixture in channel has been analyzed for effect of blockage ratio (BR)=0.39, 0.51, 0.59, 0.71 with spacing of 2D and 3D. The reactive Navier-Stokes equation is used to solve the detonation wave propagation mechanism in Ansys Fluent platform. The result shows that fully developed detonation wave initiation regime is observed near smaller vortex generator ratio of BR=0.39 inside the combustor. The turbulent rate of reaction has also a great significance role for shock wave structure. However, vortices of rapid detonation wave are appears near thin boundary layer of each obstacle. Finally, detonation combustor demonstrates the superiority of pressure gain combustor with turbulent rate of reaction of 0.6 kg mol/m3 -s inside the detonation tube with obstacle spacing of 12 cm, this blockage enhanced the turbulence intensity and propulsive thrust. The successful detonation wave propagation speed is achieved in shortest possible time of 0.031s with a significance magnitude of 2349 m/s, which is higher than Chapman-Jouguet (C-J) velocity of 1848 m/s. Furthermore, stronger propulsive thrust force of 36.82 N is generated in pulse time of 0.031s.

A Study on the Domestic Trends and Development Strategies of Marine Energy Research in South Korea (국내 해양에너지 연구동향 및 발전 전략에 관한 연구)

  • Sang-Hee Lee;Jin-Hoo Kim;Sung-Bo Kim
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.1
    • /
    • pp.173-182
    • /
    • 2024
  • While the current share of marine energy in South Korea is less than 1%, it is globally recognized as a resource approximately four times the annual electricity production. Considering the diverse geographical features of the East Sea, South Sea, and West Sea, marine energy development is crucial for South Korea and essential for achieving the 2050 carbon neutrality goal. Policy efforts for marine energy deployment focus on establishing an innovative, open, and integrated R&D system to respond flexibly. The construction of a scientific, economic, and social valid site selection system, along with a maritime spatial planning regime that considers environmental and socio-economic impacts, is emphasized. To expedite the early activation of marine energy, comprehensive policy endeavors, including discriminatory support policies and participation in international standardization, are anticipated to contribute to the sustainable development and dissemination of marine energy. Marine renewable energy plays a significant role in sustainability and addressing climate change, considered an essential component of South Korea's efforts toward carbon neutrality.

Microstructural evolution of tantalum nitride thin films synthesized by inductively coupled plasma sputtering

  • Sung-Il Baik;Young-Woon Kim
    • Applied Microscopy
    • /
    • v.50
    • /
    • pp.7.1-7.10
    • /
    • 2020
  • Tantalum nitride (TaNx) thin films were grown utilizing an inductively coupled plasma (ICP) assisted direct current (DC) sputtering, and 20-100% improved microhardness values were obtained. The detailed microstructural changes of the TaNx films were characterized utilizing transmission electron microscopy (TEM), as a function of nitrogen gas fraction and ICP power. As nitrogen gas fraction increases from 0.05 to 0.15, the TaNx phase evolves from body-centered-cubic (b.c.c.) TaN0.1, to face-centered-cubic (f.c.c.) δ-TaN, to hexagonal-close-packing (h.c.p.) ε-TaN phase. By increasing ICP power from 100 W to 400 W, the f.c.c. δ- TaN phase becomes the main phase in all nitrogen fractions investigated. The higher ICP power enhances the mobility of Ta and N ions, which stabilizes the δ-TaN phase like a high-temperature regime and removes the micro-voids between the columnar grains in the TaNx film. The dense δ-TaN structure with reduced columnar grains and micro-voids increases the strength of the TaNx film.

Fertilizer and Organic Inputs Effects on CO2 and CH4 Emission from a Soil under Changing Water Regimes (토양 수분 변동 조건에서 시비 및 유기물 투입에 따른 CO2와 CH4 방출 특성)

  • Lim, Sang-Sun;Choi, Woo-Jung;Kim, Han-Yong
    • Korean Journal of Environmental Agriculture
    • /
    • v.31 no.2
    • /
    • pp.104-112
    • /
    • 2012
  • BACKGROUND: Agricultural inputs (fertilizer and organic inputs) and water conditions can influence $CH_4$ and $CO_2$ emission from agricultural soils. This study was conducted to investigate the effects of agricultural inputs (fertilizer and organic inputs) under changing water regime on $CH_4$ and $CO_2$ emission from a soil in a laboratory incubation experiment. METHODS AND RESULTS: Four treatments were laid out: control without input and three type of agricultural inputs ($(NH_4)_2SO_4$, AS; pig manure compost, PMC; hairy vetch, HV). Fertilizer and organic inputs were mixed with 25 g of soil at 2.75 mg N/25 g soil (equivalent to 110 kg N/ha) in a bottle with septum, and incubated for 60 days. During the first 30-days incubation, the soil was waterlogged (1 cm of water depth) by adding distilled water weekly, and on 30 days of incubation, excess water was discarded then incubated up to 60 days without addition of water. Based on the redox potential, water regime could be classified into wetting (1 to 30 days), transition (31 to 40 days), and drying periods (41 to 60 days). Across the entire period, $CH_4$ and $CO_2$ flux ranged from 0 to 13.8 mg $CH_4$/m/day and from 0.4~1.9 g $CO_2$/m/day, and both were relatively higher in the early wetting period and the boundary between transition and drying periods. During the entire period, % loss of C relative to the initial was highest in HV (16.4%) followed by AS (8.1%), PMC (7.5%), and control (5.4%), indicating readily decomposability of HV. Accordingly, both $CH_4$ and $CO_2$ fluxes were greatest in HV treatment. Meanwhile, the lower $CH_4$ flux in AS and PMC treatments than the control was ascribed to reduction in $CH_4$ generation due to the presence of oxidized compounds such as ${SO_4}^{2-}$, $Fe^{3+}$, $Mn^{4+}$, and ${NO_3}^-$ that compete with precursors of $CH_4$ for electrons. CONCLUSION: Green manure such as HV can replace synthetic fertilizer in terms of N input, however, it may increase $CH_4$ emission from soils. Therefore, co-application of green manure and livestock manure compost needs to be considered in order to achieve satisfactory N supply and to mitigate $CH_4$ and $CO_2$ emission.

A Study on the Growth Proccess and Strategic Niche Management of New Energy Technology: A Case Study with Government Supporting Photovoltaic R&D Project (전략적 니치관리(SNM)를 활용한 정부 신재생 R&D 성장과정 분석)

  • Kim, Bong-Gyun;Moon, Sun-Woo
    • Journal of Technology Innovation
    • /
    • v.20 no.2
    • /
    • pp.161-187
    • /
    • 2012
  • Recently, environmentally friendly technology are becoming important due to reconsideration about climate change and environmental pollution. In addition, as well as technical skills and social interaction through an analysis of the nonlinear transition management and policy implementation are emerging. This study of the development of photovoltaic industry in Korea 10 years analyze with strategic niche management (SNM) based on the theoretical and multi-layered perspective (MLP) is used as the analytical framework. Choose the gerverment-support project for niche technology, through a process of quantifying and alnalyze the phase transition to Regime with the numerical method and policy vision, learning effects, and network that key elements of SNM, MLP. Through the analysis of the photovoltaic industry technology-commercialization phase was investigated. This conventional overall and step-by-step model for technical management is proposed to replace exiting linear and narrow method and through the case study its validity was confirmed.

  • PDF

Surface Micelle Formation of Polystyrene-b-Poly(2-vinyl pyridine) Diblock Copolymer at Air-Water Interface

  • Park, Myunghoon;Bonghoon Chung;Byungok Chun;Taihyun Chang
    • Macromolecular Research
    • /
    • v.12 no.1
    • /
    • pp.127-133
    • /
    • 2004
  • We have studied the surface micelle formation of polystyrene-b-poly(2-vinyl pyridine) (PS-b-P2VP) at the air-water interface. A series of four PS-b-P2VPs were synthesized by anionic polymerization, keeping the PS block length constant (28 kg/㏖) and varying the P2VP block length (1, 11, 28, or 59 kg/㏖). The surface pressure-area ($\pi$-A) isotherms were measured and the surface morphology was studied by atomic force microscopy (AFM) after Langmuir-Blodgett film deposition onto silicon wafers. At low surface pressure, the hydrophobic PS blocks aggregate to form pancake-like micelle cores and the hydrophilic P2VP block chains spread on the water surface to form a corona-like monolayer. The surface area occupied by a block copolymer is proportional to the molecular weight of the P2VP block and identical to the surface area occupied by a homo-P2VP. It indicates that the entire surface is covered by the P2VP monolayer and the PS micelle cores lie on the P2VP monolayer. As the surface pressure is increased, the $\pi$-A isotherm shows a transition region where the surface pressure does not change much with the film compression. In this transition region, which displays high compressibility, the P2VP blocks restructure from the monolayer and spread at the air-water interface. After the transition, the Langmuir film becomes much less compressible. In this high-surface-pressure regime, the PS cores cover practically the entire surface area, as observed by AFM and the limiting area of the film. All the diblock copolymers formed circular micelles, except for the block copolymer having a very short P2VP block (1 kg/㏖), which formed large, non-uniform PS aggregates. By mixing with the block copolymer having a longer P2VP block (11 kg/㏖), we observed rod-shaped micelles, which indicates that the morphology of the surfaces micelles can be controlled by adjusting the average composition of block copolymers.

An Experience of a Country in Transition and the Change of North Korea : An Adaptation of the 'Myanmar Model' (체제변동국가의 경험과 북한의 변화: '미얀마 모델'의 적용 가능성)

  • JANG, Jun Young
    • Journal of International Area Studies (JIAS)
    • /
    • v.22 no.2
    • /
    • pp.305-330
    • /
    • 2018
  • The purpose of this article is to examine whether Myanmar's experience in which dealing with the most exemplary change among rogue states or pariah state in the 21st century is feasible for North Korea's case. Recently, North Korea's willingness to dialogue, reform and open is similar to the precedent in which the Myanmar military junta dismantled its ruling system and turned over transition period through general elections in 2010 and 2015 each. The so-called 'Myanmar Model' refers to a country branded as a rogue state which has been under the international sanctions and pressure, and opening its political system and the market by choosing transformation. However, rapid changes in speed across the entire society after opening up are impossible because the political elite is only the leading role and implementation in the transition. In case of Myanmar, military culture has penetrated into society due to such a long-lasting military dictatorship, and even democratic bloc has become accustomed to authoritarian decision-making process. Furthermore, the "reserved area" of the old regime still exists in a deformed political structure that can not retrieve the interests of the military. Therefore there could not be achieved political development in term of qualification. North Korea also appears unlikely to achieve political and economic assessment in a short period of time, as civil society has not appeared due to its long dictatorship and very low economic development levels. Like Myanmar, North Korea is also likely to control the pace and direction of upcoming reforms and open, as the dictator or most powerful person chose to reform and open up. Therefore, if North Korea moves toward the 'Myanmar Model', there will be high expectations of new changes in the short term, but it could be delayed or stalled in the mid and long term.

Influence of Oxidation Inhibitor on Carbon-Carbon Composites: 6. Studies on Friction and Wear Properties of Carbon-Carbon Composites (산화억제제 첨가에 의한 탄소/탄소 복합재료의 물성에 관한 연구 : 6. 탄소/탄소 복합재료의 마찰 및 마모특성)

  • Park, Soo-Jin;Seo, Min-Kang;Lee, Jae-Rock
    • Polymer(Korea)
    • /
    • v.25 no.1
    • /
    • pp.133-141
    • /
    • 2001
  • The friction and wear properties of carbon-carbon composites made with different weight percent of $MoSi_2$ as an oxidation inhibitor were investigated using a constant speed wear test apparatus in an oxidation environment. The results indicated the carbon-carbon composites undergoing an abrupt transition of friction coefficient, from low-friction behavior(${\mu}$=0.15~0.2) during normal wear regime to the high-friction behavior(${\mu}$=0.5~0.6) during dusting wear regime at the frictional temperature range of 150~180${\circ}C$. The existence of temperature-dependent friction and wear regimes implied that the performance of specimen made with carbon-carbon composites was markedly affected by the thermal properties of the composites. The carbon-carbon composites filled with MoSi2 exhibited two times lower coefficient of friction and wear rate in comparison with the composites without $MoSi_2$. Especially, the composites containing 4wt% $MoSi_2$ filler showed a significantly improved activation energy for wear due to the reduction of both the porosity and powdery debris film formation on sliding surface when compared to those without $MoSi_2$.

  • PDF