• Title/Summary/Keyword: Transient simulation

Search Result 1,674, Processing Time 0.033 seconds

Power System Stability Analysis Using a Hybrid Approach (하이브리드 방법을 이용한 전력계통 안정도 해석)

  • Seo, Gyu-Seok;Park, Ji-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.10
    • /
    • pp.21-25
    • /
    • 2010
  • This paper explains hybrid method that combines Time domain simulation technique with the direct method of Transient stability analysis. First, it calculate trajectory of real system by Time domain Simulation using OOP(Object Oriented Programming method) and evaluate Transient Energy Function to induce stability index to calculate Transient stability margin. Once the status of system(stable or unstable) has been identified, proper criteria are proposed to stop time-domain simulation to reduce CPU time.

A study on the transient characteristics during speed up of inverter heat pump (회전수 상승폭 변화에 따른 인버터열펌프의 비정상 운전특성)

  • 황윤제;김호영
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.4
    • /
    • pp.495-507
    • /
    • 1998
  • The transient characteristics of a 4.0㎾ inverter driven heat pump was investigated by theoretical and experimental studies. The heat pump used in this study consists of a high side scroll compressor and $\Phi$7 compact heat exchangers with two capillary tubes. A series of tests was peformed to examine the transient characteristics of heat pump in heating and cooling mode when the operating speed was varied from 30Hz to 102Hz. One of the major issues that has not been addressed so far is transient characteristics during speed modulation. A cycle simulation model has been developed to predict the cycle performance under frequency rise-up conditions, and the results of theoretical study were compared with the results of experimental study. The theoretical model was driven from mass conservation and energy conservation equations to predict the operation points of refrigerant cycle and the performances at various operating speeds. For transient conditions, the simulated results are in good agreement with the experimental results within 10%. The transient cycle migration of the liquid state refrigerant causes a significant dynamic change in system. Thus, the migration of refrigerant is the most important factor whenever An experimental analysis is performed or A simulation model is developed.

  • PDF

Transient Stability Analysis using Large-Scale Real Time Digital Simulator

  • Yoon, Yong-Beum;Kim, Tae-Kyun;Won, Jong-Ryul;Shin, Jeong-Hoon;Kim, Yong-Hak;Cha, Seung-Tae;Choo, Jin-Boo
    • KIEE International Transactions on Power Engineering
    • /
    • v.11A no.4
    • /
    • pp.33-38
    • /
    • 2001
  • The KEPS(KEPCO's Enhanced Power system Simulator) Real Time Digital Simulator(RTDS) is the largest real time power system simulator ever built. A power system which includes 320 (3-phase) buses and 90 generators has been modeled and run in real time. Since such large-scale systems were involved, it was not practical to validate them using non-real time electro-magnetic transient programs such as EMTDC™ or EMTP. Instead, the results of the real time electromagnetic transient simulation were validated by comparing to transient stability simulations run using PTI's PSS/E™ program. The comparison of results from the two programs is very good in almost all cases. However, as expected, some differences did exist and were investigated. The differences in the results were primarily traced to the fact that the electromagnetic transient solution algorithm provides more detail solutions and therefore greater accuracy than the transient stability algorithm. After finding very good comparison of results between RTDS Simulator and PSS/E, and after investigating the discrepancies found, KEPCO gained the necessary confidence to use the large-scale real time simulator to analyze and develop their power system.

  • PDF

Capless Low Drop Out Regulator With Fast Transient Response Using Current Sensing Circuit (전류 감지 회로를 이용한 빠른 과도응답특성을 갖는 capless LDO 레귤레이터)

  • Jung, Jun-Mo
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.552-556
    • /
    • 2019
  • This paper present a capless low drop out regulator (LDO) that improves the load transient response characteristics by using a current regulator. A voltage regulator circuit is placed between the error amplifier and the pass transistor inside the LDO regulator to improve the current characteristics of the voltage line, The proposed fast transient LDO structure was designed by a 0.18 um process with cadence's virtuoso simulation. according to test results, the proposed circuit has a improved transient characteristics compare with conventional LDO. the simulation results show that the transient of rising increases from 1.954 us to 1.378 us and the transient of falling decreases from 19.48 us to 13.33 us compared with conventional capless LDO. this Result has improved response rate of about 29%, 28%.

Transient Stability Analysis Based on OOP (객체지향기반 과도 안정도 해석)

  • Park, Ji-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.3
    • /
    • pp.354-362
    • /
    • 2008
  • This paper presents the new method of power system transient stability simulation, which combines the desirable features of both the time domain technique based on OOP(Object-oriented Programming) and the direct method of transient stability analysis using detailed generator model. OOP is an alternative to overcome the problems associated with the development, maintenance and update of large software by electrical utilities. Several papers have already evaluated this approach for power system applications in areas such as load flow, security assessment and graphical interface. This paper applied the object-oriented approach to the problem of power system dynamics simulation. The modeling method is that each block of dynamic system block diagram is implemented as an object and connected each other. In the transient energy method, the detailed synchronous generator model is so-called two-axis model. For the excitation model, IEEE type1 model is used. The developed mothed was successfully applied to New England Test System.

Modeling and Simulation for Transient Pulse Gamma-ray Effects on Semiconductor Devices (반도체 소자의 과도펄스감마선 영향 모델링 및 시뮬레이션)

  • Lee, Nam-Ho;Lee, Seung-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.9
    • /
    • pp.1611-1614
    • /
    • 2010
  • The explosion of a nuclear weapon radiates a gamma-ray in the form of a transient pulse. If the gamma-ray introduces to semiconductor devices, much Electron-Hole Pairs(EHPs) are generated in depletion region of the devices[7]. as a consequence of that, high photocurrent is created and causes upset, latchup and burnout of semiconductor devices[8]. This phenomenon is known for Transient Radiation Effects on Electronics(TREE), also called dose-rate effects. In this paper 3D structure of inverter and NAND gate device was designed and transient pulse gamma-ray was modeled. So simulation for transient radiation effect on inverter and NAND gate was accomplished and mechanism for upset and latchup was analyzed.

New Approach for Transient Radiation SPICE Model of CMOS Circuit

  • Jeong, Sang-Hun;Lee, Nam-Ho;Lee, Jong-Yeol;Cho, Seong-Ik
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.5
    • /
    • pp.1182-1187
    • /
    • 2013
  • Transient radiation is emitted during a nuclear explosion and causes fatal errors as upset and latch-up in CMOS circuits. This paper proposes the transient radiation SPICE models of NMOS, PMOS, and INVERTER based on the transient radiation analysis using TCAD (Technology Computer Aided Design). To make the SPICE model of a CMOS circuit, the photocurrent in the PN junction of NMOS and PMOS was replaced as current source, and a latch-up phenomenon in the inverter was applied using a parasitic thyristor. As an example, the proposed transient radiation SPICE model was applied to a CMOS NAND circuit. The CMOS NAND circuit was simulated by SPICE and TCAD using the 0.18um CMOS process model parameter. The simulated results show that the SPICE results were similar to the TCAD simulation and the test results of commercial CMOS NAND IC. The simulation time was reduced by 120 times compared to the TCAD simulation.

Cutting Process Simulation in Transient Cuts (과도 절삭에서의 절삭 공정 시뮬레이션)

  • 고정훈;조동우;윤원수;김주한
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.447-452
    • /
    • 2001
  • In most of the existing mechanistic models, the cutting process simulation is often restricted to a single path machining operation under a fixed cutting condition. Complex cutting processes such as die or mold manufacturing, however, are performed under two- or three-dimensional multiple tool paths. Since the tool paths in CNC machining are composed of line and arc segments, transient cuts are frequently occured due to the multiple paths. Even in steady cuts, the width of cut is varied with each segment. In this regard, this paper deals with the development of process simulation system for transient cuts, where continuously changing cutting configuration is computed, and then the cutting forces are predicted.

  • PDF

Examining the effects of wall roughness on the hydraulic characteristics of chlorine contactor using Transient CFD Simulation Technique (벽면 조도계수가 염소 접촉조 수리특성에 미치는 영향 연구)

  • Chae, Seon-Ha;Lim, Young-Taek;Cha, Min-Whan;Kim, Jong-Oh
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.5
    • /
    • pp.759-765
    • /
    • 2011
  • In this study, in order to investigate the effects of wall roughness on the hydraulic characteristics of chlorine contactor, CFD simulation and tracer tests were conducted for both of reactors whose walls are made of concrete and lined with PE(Poly Ethylene). In the case of walls contacted with water being lined with PE (relatively lower roughness), the flow within reactor is closer to plug flow than that in the case of concrete walls (relatively higher roughness). Especially, the longer tail of C-curve from the results of transient CFD simulation can tell that Morill index in the case concrete walls is much higher than that in the case of walls be lined with lower roughness material.

Experimental and Theoretical Studies on the Dynamic Characteristics During Speed Down of Inverter Heat Pump

  • Hwang, Yoon-Jei;Kim, Ho-Young
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.8 no.1
    • /
    • pp.29-39
    • /
    • 2000
  • A series of tests were performed to verify the transient characteristics of heat pump in heating and cooling mode when operating speed was varied over the 30 to 102Hz. One of the major issues that has not been addressed so far is transient characteristics during speed modulation. The model for cycle simulation has been developed to predict the cycle performance under conditions of decreasing drive frequency and the results of the theoretical study were compared with the results of the experimental study. The simulated results were in good agreement with the experimental result within 10%. The transient cycle migration of the liquid state refrigerant causes significant dynamic change in system. Thus, the migration of refrigerant was the most important factor whenever do experimental results analysis or develop simulation model.

  • PDF