• Title/Summary/Keyword: Transient radiation

Search Result 171, Processing Time 0.024 seconds

Ignition Transient Investigation of Rocket Motor

  • Chang, Suk-Tae;Sam M. Han;John C. Chai
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.3
    • /
    • pp.45-54
    • /
    • 2000
  • Ignition transient is a. very rapid process lasting only in the order of 100 milliseconds and therefore it is difficult to measure all relevant ballistic properties. Numerical simulation is thus useful to quantify some of these hard to measure flow and ballistic properties. One-dimensional model was employed to study the effects of aging using simplified aging scenarios for both N-H sustainer and booster motors. Also the effects of newly designed igniter on the ignition of N-H sustainer was simulated. Radiation effects could be significant in terms of energy flux increase to the propellant surface and the energy exchange between the combustion gas itself. One dimension implementation of radiation showed significant effects for rear-mounted igniter. Implementation of radiation effects into 2-D axi-symmetric numerical model was completed and its effects on the N-H sustainer were examined. To have a reliable prediction of computer model on ignition transient, accurate chemical property data on the propellant and igniter gas are required. It was found that such property data on aged N-H motors are not available. Chemical aging model can be used to predict to some degree of accuracy effects of aging on chemical and mechanical properties. Such a model was developed, albeit 2-dimensional, to study migration of moisture through a representative solid rocket motor configuration.

  • PDF

A Numerical Study on Radiation-Induced Oscillatory Instability in CH$_4$/Air Diffusion Flames (메탄/공기 확산화염에서 복사 열손실로 인한 맥동 불안정에 관한 수치해석)

  • Son, Chae-Hun;Jeong, Seok-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.1
    • /
    • pp.29-35
    • /
    • 2001
  • Radiation-induced oscillatory instability in CH$_4$/Air diffusion flames is numerically investigated by adopting detailed chemistry. Counterflow diffusion flame is employed as a model flamelet and optically thin gas-phase radiation is assumed. Attention is focused on the extinction regime induced by radiative heat loss, which occurs at low strain rate. Once a steady flame structure is obtained for a prescribed value of initial strain rate, transient solution of the flame is calculated after a finite amount of strain-rate perturbation is imposed on the steady flame. Depending on the initial strain rate and the amount of perturbed strain rate, transient evolution of the flame exhibits various types of flame-evolution behaviors. Basically, the dynamic behaviors can be classified into two types, namely oscillatory decaying solution and diverging solution leading to extinction.

Long-term Outcomes of Gamma Knife Stereotactic Radiosurgery of Vestibular Schwannomas

  • Kim, Kang-Min;Park, Chul-Kee;Chung, Hyun-Tai;Paek, Sun-Ha;Jung, Hee-Won;Kim, Dong-Gyu
    • Journal of Korean Neurosurgical Society
    • /
    • v.42 no.4
    • /
    • pp.286-292
    • /
    • 2007
  • Objective : Gamma Knife Stereotactic Radiosurgery (GK SRS) has become an important treatment modality for vestibular schwannomas. We evaluated the tumor control rate, patterns of tumor volume change and preservation of hearing following low-dose radiation for vestibular schwannomas in a homogeneous cohort group in which the mean marginal dose was 12 Gy. Methods : A total of 59 patients were enrolled in this study. All enrolled patients were followed-up for at least 5 years and the radiation dose was 11-13 Gy. Regular MRI, audiometry and clinical evaluations were done and tumor volumes were obtained from MRI using the OSIRIS program. Results : The tumor control rate was 97%. We were able to classify the patterns of change in tumor volume into three categories. Transient increases in tumor volume were detected in 29% of the patients and the maximum transient increase in tumor volume was identified at 6 to 30 months after GK SRS. The transient increases in tumor volume ranged from 121% to 188%. Hearing was preserved in 4 of the 12 patients who had serviceable hearing prior to treatment. There were no other complications associated with GK SRS. Conclusion : Low-dose GK SRS was an effective and safe mode of treatment for vestibular schwannomas in comparison to the previously used high-dose GK SRS. Transient increases in tumor volume can be identified during the follow-up period after low-dose GK SRS for vestibular schwannomas. Physicians should be aware that these increases are not always indicative of treatment failure and that close observation is required following treatments. Unfortunately, a satisfactory hearing preservation rate was not achieved by reducing the radiation dose. It is thought that hearing preservation is a more sophisticated problem and further research is required.

The Study of Latch-up (펄스감마선에 의한 DC/DC 컨버터의 Latch-up현상에 대한 연구)

  • Oh, Seung-Chan;Lee, Nam-Ho;Lee, Heung-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.719-721
    • /
    • 2012
  • In this study, we carried out transient radiation experiments for identify failure situation by a transient radiation effect on DC/DC converter device due to high energy ionizing radiation pulse induced to electronic device. This experiments were carried out using a 60 MeV electron beam pulse of the LINAC(Linear Accelerator) facility in the Pohang Accelerator Laboratory. In this experiment, we has found that the latch-up phenomena could be checked in more than $1.0{\times}10^8$rad(si)/sec condition.

  • PDF

Implementation of the Radiation Protection Module for Electronic Equipment from Pulsed Radiation and Its Function Tests (펄스방사선에 대한 전자장비 방호용 모듈구현 및 기능시험)

  • Lee, Nam-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.10
    • /
    • pp.1421-1424
    • /
    • 2013
  • The electronic equipment which is exposed to high level pulsed radiation is damaged by Upset, Latchup, and Burnout. Those damages come from the instantaneous photocurrent from electron-hole pairs generated in itself. Such damages appear as losses of a power in military weapon system or as a blackout in aerospace equipment and eventually caused in gross loss of national power. In this paper, we have implemented a RDC(Radiation detection and control module) as a part of the radiation protection technology of the electronic equipment or devices from the pulsed gamma radiation. The RDC, which is composed of pulsed gamma-ray detection sensor, signal processors, and pulse generator, is designed to protect the an important electronic circuits from the a pulse radiation. To verify the functionality of the RDC, LM118s, which had damaged by the pulse radiation, were tested. The test results showed that the test sample applied with the RDC was worked well in spite of the irradiation of a pulse radiation. Through the experiments we could confirm that the radiation protection technology implemented with the RDC had the functionality of radiation protection for the electronic devices.

Numerical Study of PAH Formation Characteristics in Laminar Non-Premixed C2H4 Jet Flames (층류 비예혼합 C2H4 제트 화염장에서의 PAH 생성특성 해석)

  • Kim, Taehoon;Kim, Yongmo
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.133-134
    • /
    • 2014
  • The full transport equation approach for laminar non-premixed flame with detailed chemistry, soot and radiation has an advantage in accuracy and describing for emission pathway, but this approach requires the excessive computational cost especially for a higher-order hydrocarbon fuel flames. On the other hand, the standard flamelet model has an efficiency and accuracy for non-premixed flame, though this model is not suitable for simulating slow processor like soot and radiation in laminar non-premixed flame situation. To overcome this limitation, modified transient flamelet model is developed which coupled with two-equation soot model involved in soot formation and evolution mechanism such as nucleation, surface growth, oxidation and agglomeration.

  • PDF

A Study on Implementation of a Transient Radiation Effects on Electronics(TREE) Assessment System Based on M&S (M&S 기반 반도체소자의 펄스감마선 피해평가 시스템 구축 연구)

  • Lee, Nam-Ho;Lee, Seung-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.7
    • /
    • pp.969-973
    • /
    • 2013
  • To simulate the effect of high dose-rate radiation on semiconductor devices, device modeling work has been performed especially in the area of photo-current generation by a PIN diode. The resultant analytical values were compared with experimental ones that were specially designed and performed to benchmark the simulation results. Initial results showed 27.85% error between the simulation and the experiment. The error can be further reduced by improvement both in simulation and in related experiments. The developed technique from the study can be applicable to radiation dosimetry and to analysis on the radiation effects in electronics.

Transient Analysis of Five-Layer System Laser Amplifier (오층구조 레이저 증폭기의 과도현상론적해석)

  • 김영권
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.3 no.4
    • /
    • pp.16-24
    • /
    • 1966
  • The LASER Amplifier is treated in the manner of a Fabry-Perot Resonator with an active media, five layers are considered: air, reflector, active medium(ruby), reflector and air. One dimensional scalar wave equations are derived using the method of boundary value probrems in which it is assumed that incident coherent radiation falls normally on the surface wall. All equations are treated from the transient analysis point of view using the Laplace transform nethods, and are arranged steady state region as an amplifier and transient region as a self excited oscillator. Also some remarks are given on the design problem of LASER amplifier in connection with the transient terms involved.

  • PDF

CMOS Logic Design and Fabrication for Analyzing the Effect of Transient Radiation Damage (과도 방사선 피해 영향 분석을 위한 CMOS 논리 소자 설계 및 제작)

  • Jeong, Sang-Hun;Lee, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.880-883
    • /
    • 2012
  • In this paper, CMOS logic device, the INVERTER, NAND, NOR were designed and fabricated using 0.18um CMOS process for analyzing the effect of transient radiation damage. Fabricated logic devices were measured by applying a 1kHz input at 1.8V supply. As a result, the current consumption of less than 70uA and Rising time, Falling time was within a 4us. Experimental results transmission delays occurred when using a 50M cable for pulse radiation experiments.

  • PDF

Radiation mechanism of gamma-ray burst prompt emission

  • Uhm, Z. Lucas;Zhang, Bing
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.49.3-50
    • /
    • 2015
  • Synchrotron radiation of relativistic electrons is an important radiation mechanism in many astrophysical sources. In the sources where the synchrotron cooling timescale is shorter than the dynamical timescale, electrons are cooled down below the minimum injection energy. It has been believed that such fast-cooling electrons have a power-law distribution in energy with an index -2, and their synchrotron radiation has a photon spectral index -1.5. On the other hand, in a transient expanding astrophysical source, such as a gamma-ray burst (GRB), the magnetic field strength in the emission region continuously decreases with radius. Here we study such a system, and find that in a certain parameter regime, the fast-cooling electrons can have a harder energy spectrum. We apply this new physical regime to GRBs, and suggest that the GRB prompt emission spectra whose low-energy photon spectral index has a typical value -1 could be due to synchrotron radiation in this moderately fast-cooling regime.

  • PDF