• 제목/요약/키워드: Transient liquid phase bonding, Temperature

검색결과 25건 처리시간 0.023초

일방향응고 Ni기초내열합금 GTD-111의 천이액상확산접합(II) -접합공정에서 모재조직의 변화- (Transient Liquid Phase Bonding of Directionally Solidified Ni Base Superalloy, GTD-111(II) -Microstructural Change of Base Metal during Bonding Process -)

  • 강정윤;황형철;김인배;김대업;우인수
    • Journal of Welding and Joining
    • /
    • 제21권2호
    • /
    • pp.89-96
    • /
    • 2003
  • The change of microstructures in the base metal during transient liquid phase bonding process of directionally Ni base superalloy, GTD-111 was investigated. Bonds were fabricated using a series of holding times(0-7.2ks) at three different temperatures(1403, 1418 and 1453K) under a vacuum of 13.3mPa. In raw material, ${\gamma}$- ${\gamma}$' eutectic phases, platelet η phases, MC carbide and PFZ were seen in interdendritic regions or near grain boundary and size of primary ${\gamma}$' precipitates near interdendritic regions were bigger than core region. The primary ${\gamma}$' precipitates in dendrite core were dissolved early in bonding process, but ${\gamma}$' precipitates near interdendritic regions were dissolved partially and shape changed. The dissolution rate increased with increasing temperature. Phases in interdendritic regions or near pain boundary continually changed with time at the bonding temperature. In the bonding temperature of 1403K, eutectic phases had not significantly changed, but η phases had transformed from platelet shape to needle morphology and PFZ region had widened with time. The interdendritic region and near pain boundary were liquated partially at 1423k and fully at 1453k by reaction of η phases and PFZ. In the bonding temperature of 1453K, interdendritic region and near pain boundary were liquated and then new phases which mixed with η phases, PFZ and MC carbide crystallized during cooling. Crystallized η phases transformed from rod shape to platelet shape with increasing holding time.

Conductive adhesive with transient liquid-phase sintering technology for high-power device applications

  • Eom, Yong-Sung;Jang, Keon-Soo;Son, Ji-Hye;Bae, Hyun-Cheol;Choi, Kwang-Seong
    • ETRI Journal
    • /
    • 제41권6호
    • /
    • pp.820-828
    • /
    • 2019
  • A highly reliable conductive adhesive obtained by transient liquid-phase sintering (TLPS) technologies is studied for use in high-power device packaging. TLPS involves the low-temperature reaction of a low-melting metal or alloy with a high-melting metal or alloy to form a reacted metal matrix. For a TLPS material (consisting of Ag-coated Cu, a Sn96.5-Ag3.0-Cu0.5 solder, and a volatile fluxing resin) used herein, the melting temperature of the metal matrix exceeds the bonding temperature. After bonding of the TLPS material, a unique melting peak of TLPS is observed at 356 ℃, consistent with the transient behavior of Ag3Sn + Cu6Sn5 → liquid + Cu3Sn reported by the National Institute of Standards and Technology. The TLPS material shows superior thermal conductivity as compared with other commercially available Ag pastes under the same specimen preparation conditions. In conclusion, the TLPS material can be a promising candidate for a highly reliable conductive adhesive in power device packaging because remelting of the SAC305 solder, which is widely used in conventional power modules, is not observed.

주석-니켈 마이크로 분말을 이용한 EV 전력모듈용 천이액상 소결 접합 (Transient Liquid Phase Sinter Bonding with Tin-Nickel Micro-sized Powders for EV Power Module Applications)

  • 윤정원;정소은
    • 마이크로전자및패키징학회지
    • /
    • 제28권2호
    • /
    • pp.71-79
    • /
    • 2021
  • 본 연구에서는 고온 대응 EV (Electric Vehicle) 전력반도체 칩 접합용 Sn-Ni 페이스트의 제조 및 특성 평가 연구가 수행되었다. Sn-Ni 페이스트의 Sn과 Ni 함량에 따른 TLPS (Transient Liquid Phase Sintering) 접합부 미세 조직 변화 관찰 결과, Sn-20Ni (in wt.%)의 경우에는 Ni 분말의 부족, 그리고 Sn-50Ni의 경우에는 Ni 분말의 과다 포함에 따른 Ni 뭉침 현상이 관찰되었다. Sn-30Ni과 Sn-40Ni의 경우에는 TLPS 접합 공정 후 상대적으로 치밀한 접합부 단면 미세 구조 조직을 가짐을 확인하였다. TLPS 접합 공정 후 접합부 시편의 DSC 열 분석 결과로부터 TLPS 접합 공정 반응 동안 Sn과 Ni의 충분한 반응이 일어남을 확인하였으며, 접합 공정 후 접합부에는 Sn이 남아 있지 않음을 확인하였다. 추가적으로 공정 온도 변화에 따른 Sn-30Ni TLPS 접합부의 계면반응 및 기계적 강도 시험이 수행되었다. TLPS 접합 공정 후 접합부는 Ni-Sn 금속간화합물과 반응하고 남은 Ni 분말들로 구성되었으며, 접합 온도가 증가함에 따라 접합부 칩 전단강도는 증가하였다. 솔더링 온도와 유사한 270 ℃의 접합 온도에서 30분 동안의 TLPS 접합 공정 수행 후 약 30 MPa의 높은 칩 전단 강도 값을 얻었다.

Ni 삽입재를 사용한 마그네슘 AZ31 합금의 TLP접합 특성평가 (Characterization of TLP Bonded of Magnesium AZ31 Alloy using a Nickel Interlayer)

  • 진영준
    • 한국자동차공학회논문집
    • /
    • 제21권4호
    • /
    • pp.113-119
    • /
    • 2013
  • The transient liquid phase (TLP) bonding was used to fabricate autogenous joints in a magnesium alloy AZ31 with the aid of a pure Ni interlayer. A $13{\mu}m$ thick pure Ni foil was used in order to form a Mg-Ni eutectic liquid at the joint interface. The interface of reaction and composition profiles were investigated as a function of bonding time using a pressure of 0.16 MPa and a bonding temperature of $515^{\circ}C$. The quality of the joints produced was examined by metallurgical characterization and the joint microstructure developed across the diffusion bonds was related to changes in mechanical properties as a function of the bonding time.

Ni/B/Ni 액상확산접합계의 액상폭에 관한 연구 (A Study on the Width of Liquid Layer of Ni/B/Ni Diffusion Bonding System)

  • 정재필;강춘식
    • Journal of Welding and Joining
    • /
    • 제13권4호
    • /
    • pp.147-154
    • /
    • 1995
  • In order to study the bonding mechanism of Ni/B/Ni transient liquid phase bonding system, width of liquid layers were calculated, where in this system melting point of insert material(B) is higher than bonding temperature and melting point of base metal(Ni). Caclulated values were compared with experimental ones which were measured by bonding Ni/B/Ni system at 1433-1474K under vacuum atmosphere. As results, the width of initial liquid layer of Ni/B/Ni system was calculated as $W_{IL}$ = $W_{o}$[1 + {2.100..rho.$_{S/}$ ( $X_{3}$ + $X_{4}$)..rho.$_{Ni}$ }-.rho.$_{S/}$.rho. Ni/], and it was nearly same with experimental values. Maximum width of liquid layer, width of liquid layer during isothermal solidification and isothermal solidification time were calculated also.o.o.o.

  • PDF

액상확산접합한 Ni기 단결정 초내열합금의 크리프 파단 및 피로특성 (Creep-Rupture and Fatigue Properties of Transient Liquid Phase Bonded Joints of Ni-Base Single Crystal Superalloy)

  • 김대업
    • Journal of Welding and Joining
    • /
    • 제19권1호
    • /
    • pp.82-87
    • /
    • 2001
  • The creep-rupture and low cycle fatigue properties of transient liquid phase bonded joints of Ni-base single crystal superalloy, CMSX-2 was investigated using MBF-80 insert metal. The (100) orientation of bonded specimen was aligned perpendicular to the joint interface. CMSX-2 was bonded at 1523K for 1.8ks in vacuum, optimum bonding condition. The creep rupture strength and rupture lives of the joints were the almost identical to ones of the base metal. SEM observation of the fracture surfaces of joints after creep rupture test revealed that the fracture surfaces classified three types of region, ductile fracture surface, cleavage fracture surface and interfacial fracture surface. The low cycle fatigue properties of the joints were also the same level as those of base metal. The elongation and reduction of area values of joints were comparable to those of base metal while fell down on creep rupture condition of high temperature.

  • PDF

304 스테인레스강과 구조용탄소강과의 천이액상확산접합에 관한 연구 (A study on transient liquid phase diffusion bonding of 304 stainless steel and structural carbon steels)

  • 김우열;정병호;박노식;강정윤;박세윤
    • Journal of Welding and Joining
    • /
    • 제9권4호
    • /
    • pp.28-39
    • /
    • 1991
  • The change of microstructure in the bonded interlayer and mechanical properties of the joints were investigated during Transient Liquid Phase Diffusion Bonding(TLP bonding) of STS304/SM17C and STS304/SM45C couples using Ni base amorphous alloys added boron and prepared alloy as insert metal. Main experimental results obtained in this study are as follows: 1) Isothermal solidification process was completed much faster than theoretically expected time, 14ks at 1473K temperature. Its completion times were 3.6ks at 1423K, 2.5ks at 1473K and 1.6ks at 1523K respectively. 2) As the concentration of boron in the insert metal increased, the more borides were precipitated near bonded interlayer and grain boundary of STS304 side during isothermal solidification process, its products were $M_{23}P(C,B)_6}_3)$ The formation of grain boundary during isothermal solidification process was completed at structural carbon steel after starting the solidfication at STS304 stainless steel. 4) The highest value of hardness was obtained at bonded interface of STS304 side. The desirable tensile properties were obtained from STS304/SM17C, STS304/SM45C using MBF50 and experimentally prepared insert metal with low boron concentration.

  • PDF

Fe-35Ni-26Cr 주강 액상확산접합부의 고온기계적 특성에 미치는 접합조건의 영향 (Effect of Bonding Condition on High Temperature Mechanical Properties of TLP Bonded Joints of FE-35Ni-26Cr Alloy)

  • 김대업
    • Journal of Welding and Joining
    • /
    • 제18권4호
    • /
    • pp.96-103
    • /
    • 2000
  • This study investigated the effects of bonding temperature and bonding atmosphere on high temperature mechanical properties of transient liquid phase(TLP) bonded joints of heat resistant alloy using MBF-50 insert metal. Specimens were bonded at 1,423~1,468K for 600s. Microconstituents of {TEX}$Cr_{7}(C,B)_{3}${/TEX}were formed in the bonded region when the bonding temperature was low. The amount of microcostituents in the bonded layer decreased with increasing the bonding temperature, and the microconstituents in the bonded layer disappeared at the bonding temperature above 1,468K. The tensile strength of the joints at elevated temperatures increased with the increase the bonding temperature and was the same level as one of the base metal in the bonding temperature over 1,453K. Microstructure and alloying element distributions of the bonded region bonded in Ar and $N_2$atmosphere were similar to those of the bonded in vacuum. The creep rupture strength and rupture lives of joints were almost identical to those of base metal.

  • PDF

150℃이하 저온에서의 미세 접합 기술 (Low Temperature bonding Technology for Electronic Packaging)

  • 김선철;김영호
    • 마이크로전자및패키징학회지
    • /
    • 제19권1호
    • /
    • pp.17-24
    • /
    • 2012
  • Recently, flip chip interconnection has been increasingly used in microelectronic assemblies. The common Flip chip interconnection is formed by reflow of the solder bumps. Lead-Tin solders and Tin-based solders are most widely used for the solder bump materials. However, the flip chip interconnection using these solder materials cannot be applied to temperature-sensitive components since solder reflow is performed at relatively high temperature. Therefore the development of low temperature bonding technologies is required in these applications. A few bonding techniques at low temperature of $150^{\circ}C$ or below have been reported. They include the reflow soldering using low melting point solder bumps, the transient liquid phase bonding by inter-diffusion between two solders, and the bonding using low temperature curable adhesive. This paper reviews various low temperature bonding methods.