• 제목/요약/키워드: Transient fault

검색결과 418건 처리시간 0.03초

프로니해석법을 이용한 공진 주파수 검출 알고리즘 (Oscillation Frequency Detecting Technique for Transmission Line Protection using Prony's Analysis)

  • 조경래;김성수;박종근;홍준희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 B
    • /
    • pp.509-512
    • /
    • 1995
  • The relaying algorithm to calculate the fault distance from only transient signal at faults in T/L is presented. In this paper. At faults the oscillation frequency components exist in both voltage and current and these components minimize the input impedance shown in fault point. The equivalent source impedance shown in relaying point is needed to calculate the fault distance using these components. To source impedance, the reflection coefficient between forward wave and backward and the Prony's analysis is also employed to extract the oscillation frequency component from transient signals. The case study show that the new distance relaying algorithm satisfies the high operation speed and high accuracy even if the algorithm uses only transient signals.

  • PDF

디지탈 계산기에 의한 우리나라 154KV계통의 과도안정도 해석 (Analysis of transient stability of 154KV power systems in Korea by digital computer techniques)

  • 한만춘;박상희;김영찬
    • 전기의세계
    • /
    • 제17권4호
    • /
    • pp.18-27
    • /
    • 1968
  • Analysis of the transient stability of power systems following disturbances involves many sets of non-linear differential equations. This paper attempts to analyze the transient stability of multi-machine power systems by the step by step method, using the electronic digital computer. The critical switching times and phase angles for the main 154KV transmission system in Korea, are given from the swing curves of the probable conditions. It is concluded that the system is, in general, stable if the relay is cut off within 12 cycles after the fault. However the fault of DAEGU-SANGJU branch, accompanying much real power, makes the system unstable when the raly is cut off within 4 cycles after fault or automatic voltage regulators are equipped in this branch.

  • PDF

SWT를 이용한 지중송전계통의 고장검출 및 고장점 추정 (Fault Detection and Location using SWT on Underground Power Cable System)

  • 정채균;이종범
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.51-53
    • /
    • 2004
  • In this paper, we are going to propose the new algorithms to detect, classify, discriminate the transient and the reflected signal from noise and thus discriminate the fault section and locale the fault accurately on underground power cable system. Actually, at this system, it's very difficult to discriminate the transient because of the reflected signal including many noises. Therefore, how to solve the noise interference is a big problem. In this paper, authors present a solution based on multiple scales correlation of the transient using stationary wavelet transform. It's simple, quick and straightforward. For applying all algorithms, we just use the signal captured in single end.

  • PDF

Analysis of an Active Superconducting Current Controller (ASCC) Considering the Transient Stability and OCR Operation in Transmission and Distribution Systems

  • Gusheh, Ahmad Ghafari;Soreshjani, Mohsen Hosseinzadeh;Rahat, Omid
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권3호
    • /
    • pp.543-550
    • /
    • 2016
  • The Active Superconducting Current Controller (ASCC) is a new type of Superconducting Fault Current Limiters (SFCL) which can limit the fault current in different modes. It also has the particular abilities of compensating active and reactive powers for electrical networks. In this paper, it is confirmed that the performance of ASCC in different operating modes introduces a limiting impedance in series with the network which can even degrade the transient stability and the operation of the Over-Current Relays (OCR) employed in a power system. In addition, the model of a three-phase ASCC is simulated, and the effect of descriptive modes on the current limiting level is investigated. For the transient stability analysis, a single machine-infinite bus system is tested, and the effect of operation modes is studied based on an equal area criterion obtaining the critical time and the critical angle. Modifying the setting parameters of OCR such as time dial and pick-up current, the protective coordination is also studied in different operating modes.

자동 재폐로기의 동작책무를 위한 아크전압 판정 및 사고거리 표정 알고리즘 (A Numerical Algorithm for Fault Location Estimation and Arc Faults Detection for Auto-Reclosure)

  • 김병만;채명석;정태영;강용철
    • 전기학회논문지
    • /
    • 제58권7호
    • /
    • pp.1294-1303
    • /
    • 2009
  • This paper presents a new numerical algorithm for fault discrimination and fault location estimation when occur to arcing ground and arcing line to line on transmission lines. The object of this paper is developed from new numerical algorithm to calculate the fault distance and simultaneously to make a distinction between transient and permanent faults. so the first of object for propose algorithm would be distinguish the permanent from the transient faults. This arcing fault discrimination algorithm is used if calculated value of arc voltage amplitude is greater than product of arc voltage gradient and the length of the arc path, which is equal or greater than the flashover length of a suspension insulator string[1-3]. Also, each algorithm is separated from short distance and long distance. This is difference to with/without capacitance between short to long distance. To test the validity of the proposed algorithms, the results of algorithm testing through various computer simulations are given. The test was simulated in EMTP/ATP simulator under a number of scenarios and calculate of algorithm was used to MATLAB.

Determination of Critical Generator Group Using Accelerating Power and Synchronizing Power Coefficient in the Transient Energy Function Method

  • Chun, Yeong-Han
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권2호
    • /
    • pp.161-166
    • /
    • 2011
  • This paper proposes an algorithm for determining critical generator lists using accelerating power and synchronizing power coefficient (SPC), and critical generator group (CGG) from CGG candidates, which is a combination of critical generators. The accurate determination of CGG provides a more accurate energy margin while providing system operator with information of possible unstable generator group. Classical transient energy function (TEF) method selects the critical generators with big corrected kinetic energy of each generator at the moment of fault removal. However, the generator with small acceleration after fault, that is, the generator with small corrected kinetic energy, is also likely to belong to CGG if the generator has small synchronizing power. The proposed algorithm has been verified to be effective compared with the classical TEF method. We utilized the power system of Korean Electric Power Corporation(KEPCO) as a test system.

보호용 CT의 과도 성능 검증에 관한 연구 (A Study on the Determination of the Transient Performance for Protective Current Transformer)

  • 김동수;박남옥;김철환;류재남
    • 전기학회논문지
    • /
    • 제59권10호
    • /
    • pp.1727-1732
    • /
    • 2010
  • The Current transformer is classified measuring CT and protective CT for their purpose. The measuring CT is required to retain a specified accuracy over the normal range of load currents, but the protective CT must be capable of providing an adequate output over wide range of fault condition. Therefore, the protective CT must determine the transient performance during fault condition. This paper measured peak instantaneous error of the TPY class CT to determine the transient performance directly and indirectly and studied the test results.

A Novel Algorithm for Fault Type Fast Diagnosis in Overhead Transmission Lines Using Hidden Markov Models

  • Jannati, M.;Jazebi, S.;Vahidi, B.;Hosseinian, S.H.
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권6호
    • /
    • pp.742-749
    • /
    • 2011
  • Power transmission lines are one of the most important components of electric power system. Failures in the operation of power transmission lines can result in serious power system problems. Hence, fault diagnosis (transient or permanent) in power transmission lines is very important to ensure the reliable operation of the power system. A hidden Markov model (HMM), a powerful pattern recognizer, classifies events in a probabilistic manner based on fault signal waveform and characteristics. This paper presents application of HMM to classify faults in overhead power transmission lines. The algorithm uses voltage samples of one-fourth cycle from the inception of the fault. The simulation performed in EMTPWorks and MATLAB environments validates the fast response of the classifier, which provides fast and accurate protection scheme for power transmission lines.

비대칭 고장전류 저감을 위한 초전도 한류기 동작 분석 (Asymmetry Components Reduction using Superconducting Fault Current Limiter Operation in Transient Period)

  • 이상봉;김철환;김규호;김재철;현옥배
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.381-382
    • /
    • 2008
  • This paper presents a novel scheme for reducing an asymmetry current with SFCL (Superconducting Fault Current Limiter) operation during transient period, when a fault occurs in power systems. The main idea is installation an auxiliary SFCL with characteristics, which reduces the asymmetry fault current in first half cycle before the operating of main SFCL. For proper activities of SFCLs, the principle of asymmetry current nature is reviewed. A scheme of asymmetry components reduction with SFCL is then explained. The EMTP/ATPDraw model of SFCLs using MODELS language developed and simulated to verify the performance and effectiveness.

  • PDF

Simplified Synthetic Testing Facility with Modified TRV Circuit

  • Chong, Jin-Kyo;Lee, Kyung Seob;Lee, Chang-Hoon;Kim, Gyu-Tak
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권2호
    • /
    • pp.881-885
    • /
    • 2018
  • In order to develop a gas circuit breaker (GCB), the breaking performance of the short line fault (SLF) should be prioritized over that of the breaker terminal fault (BTF). In brief, it is necessary to evaluate the thermal characteristics of the insulating gas that is filled in a GCB. In the process of developing a GCB, many companies use the simplified synthetic testing facility (SSTF).In order to evaluate the SLF breaking performance of a GCB with a long minimum arcing time, a modifications to the conventional SSTF was proposed. In this study, we developed the SSTF with a modified transient recovery voltage circuit. The performance of the newly developed SSTF was verified by an $L_{90}$ breaking performance test on a rating combination of 170 kV, 50 kA, and 60 Hz.