• Title/Summary/Keyword: Transient condition

Search Result 786, Processing Time 0.031 seconds

The Homologous Region 3 from Bombyx mori Nucleopolyhedrovirus Enhancing the Transcriptional Activity of Drosophila hsp70 Promoter

  • Tang, Shun-Ming;Yi, Yong-Zhu;Zhou, Ya-Jing;Zhang, Zhi-Fang;Li, Yi-Ren;He, Jia-Lu
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.9 no.2
    • /
    • pp.235-239
    • /
    • 2004
  • Drosophila melanogaster heat shock protein 70 gene promoter (Dhsp70p) is widely used in transgenic insect to drive exogenous gene, and the homologous region 3 from Bombyx mori nucleopolyhedrovirus (BmNPVhr3) functions as an enhancer for several promoters. To test whether BmNPVhr3 can enhance the Dhsp70ps transcriptional activity, the reporter plasmids, which contain the Dhsp70p, the reporter $\beta$-galactosidase gene with SV40 terminator and BmNPVhr3 fragment, are constructed and transfected into the insect cell lines (Bm-N cells and Sf-21 cells) by lipofectin-mediated method. The results from the transient expression assay show that BmNPVhr3 significantly increases transcriptional activity of Dhsp70p both under the normal condition and under the heat-shock treatment, although the effects are significantly different between in Bm-N cells and in sf-21 cells. The enhancing behavior of BmNPVhr3 on the Dhsp70p is in an orientation-independent manner. Meanwhile, the effects of heat-shock treatment on Dhsp70p alone or Dhsp70p/BmNPVhr3 combination present no significant difference, indicating that BmNPVhr3 only enhances the transcriptional activity of Dhsp70p, but cant alter its characteristic of the response to the heat-shock stress. The above results suggest that the Dhsp70p/BmNPVhr3 combination is more effective one to drive exogenous gene for transgene or stable cell expression system in insects.

A Study on Three-dimensional Dynamic Analysis of a Towing Cable for Marine Survey Instruments (해양탐사장비 예인케이블의 3차원 동적해석에 관한 연구)

  • 정동호;김종규;박한일
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.8 no.2
    • /
    • pp.203-209
    • /
    • 2003
  • In this study, the configuration and tension of a towing cable for side-scan sonar are predicted in an ambient flow and at an unsteady towing condition. The governing equation of three-dimensional dynamic analysis for a flexible cable is solved using a finite difference method. We successfully predict the configuration and tension of a side-scan sonar and designed the towing system. It is found in static analyses that the side-scan sonar must be towed to keep a its stable depth at a reasonable speed. The study also reveals in the transient analyses that the dominant component affecting the top tension is the tangential drag force for the larger towing speed than the critical speed, and the soft weight of a towed instrument for the smaller towing speed than. It should be maneuvered for a towing vessel with good consideration for the impact effect in a cable due to tension peak when a towing speed is suddenly increase. The developed program can be applicable for three-dimensional dynamic analysis of a towing system for various marine survey instruments.

The Starting Characteristics of the Steady Ejector-Diffuser System

  • Gopalapillai, Rajesh;Kim, Heuy-Dong;Matsuo, Shigeru;Setoguchi, Toshiaki
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.680-685
    • /
    • 2008
  • The ejector is a simple device which can transport a low-pressure secondary flow by using a high-pressure primary flow. In general, it consists of a primary driving nozzle, a mixing section, and a diffuser. The ejector system entrains the secondary flow through a shear action generated by the primary jet. Until now, a large number of researches have been made to design and evaluate the ejector systems, where it is assumed that the ejector system has an infinite secondary chamber which can supply mass infinitely. However, in almost all of the practical applications, the ejector system has a finite secondary chamber implying steady flow can be possible only after the flow inside ejector has reached an equilibrium state after the starting process. To the authors' best knowledge, there are no reports on the starting characteristics of the ejector systems and none of the works to date discloses the detailed flow process until the secondary chamber flow reaches an equilibrium state. The objective of the present study is to investigate the starting process of an ejector-diffuser system. The present study is also planned to identify the operating range of ejector-diffuser systems where the steady flow assumption can be applied without uncertainty. The results obtained show that the one and only condition in which an infinite mass entrainment is possible is the generation of a recirculation zone near the primary nozzle exit. The flow in the secondary chamber attains a state of dynamic equilibrium at this point.

  • PDF

Oil Carrier, Development of on Optimized Anti-Splash Device Model for COT Vent Pipe (유조선, COT Vent Pipe용 Anti-Splash Device 최적 모델 개발)

  • Na, Ok-kyun;Jeon, Young-Soo;Park, Sin-kil;Kim, Jong-Ho
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2015.09a
    • /
    • pp.50-55
    • /
    • 2015
  • Application of newly conceptualized Anti-Splash Devices designed for COT vent pipes were studied on a P/V valve located on the upper deck of an oil carrier vessel. Anti-Splash devices are used in the shipbuilding industry in order to avoid oil overflow and spray accidents caused by excess pressure and vacuum condition in the cargo oil tanks. These conditions are caused by the transverse and longitudinal sloshing forces that arise from ship motion during sea voyages. The main issue with existing Anti-Splash device model is flux at the outlet of the Anti-Splash Device, and so, new conceptual models for the Anti-Splash device were developed and compared to existing Anti-Splash device model using CFD analysis. Transient analysis was used to capture the flow and velocity of each model and a comparative analysis was performed between old and new-concept models. This data was used to determine the optimal design parameters in order to develop an optimized Anti-Splash Device. A Factory acceptance test was performed on the new-concept models in order to verify the performance and efficiency against their design requirements and other criterion. The final step performed was to apply the optimized Anti-Splash Device models for COT vent pipes to an actual vessel and verify performance through a seawater cargo operation during a sea voyage as per the ship owner's request. The patent for the aforementioned device was obtained by the Korean Intellectual property Office dated Dec. 18th,2014.

  • PDF

A Study on Real Time Fault Diagnosis and Health Estimation of Turbojet Engine through Gas Path Analysis (가스경로해석을 통한 터보제트엔진의 실시간 고장 진단 및 건전성 추정에 관한 연구)

  • Han, Dong-Ju
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.4
    • /
    • pp.311-320
    • /
    • 2021
  • A study is performed for the real time fault diagnosis during operation and health estimation relating to performance deterioration in a turbojet engine used for an unmanned air vehicle. For this study the real time dynamic model is derived from the transient thermodynamic gas path analysis. For real fault conditions which are manipulated for the simulation, the detection techniques are applied such as Kalman filter and probabilistic decision-making approach based on statistical hypothesis test. Thereby the effectiveness is verified by showing good fault detection and isolation performances. For the health estimation with measurement parameters, it shows using an assumed performance degradation that the method by adaptive Kalman filter is feasible in practice for a condition based diagnosis and maintenance.

Trends of Packaging and Micro-joining Technologies for Car Electronics (자동차용 전장품의 패키징 및 마이크로 접합기술 동향)

  • Lee, Gyeong Ah;Cho, Do Hoon;Sri Harini, Rajendran;Jung, Jae Pil
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.1
    • /
    • pp.7-16
    • /
    • 2022
  • Recently, the automobile industry is rapidly changing due to technological development. Next-generation cars with high technology and new functions are on the market. It is essential to develop electronic devices to meet the condition of next-generation cars. In this study, the authors have reviewed recent trends of automotive electronics and packaging technology. Automotive electronics are used in harsh environments compared with other industries. Thus, it is important to improve the reliability of device junctions that directly affect electronics performance. Soldering, TLP (transient liquid phase bonding), and sintering are introduced for the bonding methods in car electronics.

Preconditioned Jacobian-free Newton-Krylov fully implicit high order WENO schemes and flux limiter methods for two-phase flow models

  • Zhou, Xiafeng;Zhong, Changming;Li, Zhongchun;Li, Fu
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.49-60
    • /
    • 2022
  • Motivated by the high-resolution properties of high-order Weighted Essentially Non-Oscillatory (WENO) and flux limiter (FL) for steep-gradient problems and the robust convergence of Jacobian-free Newton-Krylov (JFNK) methods for nonlinear systems, the preconditioned JFNK fully implicit high-order WENO and FL schemes are proposed to solve the transient two-phase two-fluid models. Specially, the second-order fully-implicit BDF2 is used for the temporal operator and then the third-order WENO schemes and various flux limiters can be adopted to discrete the spatial operator. For the sake of the generalization of the finite-difference-based preconditioning acceleration methods and the excellent convergence to solve the complicated and various operational conditions, the random vector instead of the initial condition is skillfully chosen as the solving variables to obtain better sparsity pattern or more positions of non-zero elements in this paper. Finally, the WENO_JFNK and FL_JFNK codes are developed and then the two-phase steep-gradient problem, phase appearance/disappearance problem, U-tube problem and linear advection problem are tested to analyze the convergence, computational cost and efficiency in detailed. Numerical results show that WENO_JFNK and FL_JFNK can significantly reduce numerical diffusion and obtain better solutions than traditional methods. WENO_JFNK gives more stable and accurate solutions than FL_JFNK for the test problems and the proposed finite-difference-based preconditioning acceleration methods based on the random vector can significantly improve the convergence speed and efficiency.

Lessons Learnt from an 11-year Experience with Lymphatic Surgery and a Systematic Review of Reported Complications: Technical Considerations to Reduce Morbidity

  • Ciudad, Pedro;Escandon, Joseph M.;Manrique, Oscar J.;Bustos, Valeria P.
    • Archives of Plastic Surgery
    • /
    • v.49 no.2
    • /
    • pp.227-239
    • /
    • 2022
  • Complications experienced during lymphatic surgery have not been ubiquitously reported, and little has been described regarding how to prevent them. We present a review of complications reported during the surgical management of lymphedema and our experience with technical considerations to reduce morbidity from lymphatic surgery. A comprehensive search across different databases was conducted through November 2020. Based on the complications identified, we discussed the best approach for reducing the incidence of complications during lymphatic surgery based on our experience. The most common complications reported following lymphovenous anastomosis were re-exploration of the anastomosis, venous reflux, and surgical site infection. The most common complications using groin vascularized lymph node transfer (VLNT), submental VLNT, lateral thoracic VLNT, and supraclavicular VLNT included delayed wound healing, seroma and hematoma formation, lymphatic fluid leakage, iatrogenic lymphedema, soft-tissue infection, venous congestion, marginal nerve pseudoparalysis, and partial flap loss. Regarding intra-abdominal lymph node flaps, incisional hernia, hematoma, lymphatic fluid leakage, and postoperative ileus were commonly reported. Following suction-assisted lipectomy, significant blood loss and transient paresthesia were frequently reported. The reported complications of excisional procedures included soft-tissue infections, seroma and hematoma formation, skin-graft loss, significant blood loss, and minor skin flap necrosis. Evidently, lymphedema continues to represent a challenging condition; however, thorough patient selection, compliance with physiotherapy, and an experienced surgeon with adequate understanding of the lymphatic system can help maximize the safety of lymphatic surgery.

Study of the mechanical properties and effects of particles for oxide dispersion strengthened Zircaloy-4 via a 3D representative volume element model

  • Kim, Dong-Hyun;Hong, Jong-Dae;Kim, Hyochan;Kim, Jaeyong;Kim, Hak-Sung
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1549-1559
    • /
    • 2022
  • As an accident tolerant fuel (ATF) concept, oxide dispersion strengthened Zircaloy-4 (ODS Zry-4) cladding has been developed to enhance the mechanical properties of cladding using laser processing technology. In this study, a simulation technique was established to investigate the mechanical properties and effects of Y2O3 particles for the ODS Zry-4. A 3D representative volume element (RVE) model was developed considering the parameters of the size, shape, distribution and volume fraction (VF) of the Y2O3 particles. From the 3D RVE model, the Young's modulus, coefficient of thermal expansion (CTE) and creep strain rate of the ODS Zry-4 were effectively calculated. It was observed that the VF of Y2O3 particles had a significant effect on the aforementioned mechanical properties. In addition, the predicted properties of ODS Zry-4 were applied to a simulation model to investigate cladding deformation under a transient condition. The ODS Zry-4 cladding showed better performance, such as a delay in large deformation compared to Zry-4 cladding, which was also found experimentally. Accordingly, it is expected that the simulation approach developed here can be efficiently employed to predict more properties and to provide useful information with which to improve ODS Zry-4.

Conceptual design of small modular reactor driven by natural circulation and study of design characteristics using CFD & RELAP5 code

  • Kim, Mun Soo;Jeong, Yong Hoon
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2743-2759
    • /
    • 2020
  • A detailed computational fluid dynamics (CFD) simulation analysis model was developed using ANSYS CFX 16.1 and analyzed to simulate the basic design and internal flow characteristics of a 180 MW small modular reactor (SMR) with a natural circulation flow system. To analyze the natural circulation phenomena without a pump for the initial flow generation inside the reactor, the flow characteristics were evaluated for each output assuming various initial powers relative to the critical condition. The eddy phenomenon and the flow imbalance phenomenon at each output were confirmed, and a flow leveling structure under the core was proposed for an optimization of the internal natural circulation flow. In the steady-state analysis, the temperature distribution and heat transfer speed at each position considering an increase in the output power of the core were calculated, and the conceptual design of the SMR had a sufficient thermal margin (31.4 K). A transient model with the output ranging from 0% to 100% was analyzed, and the obtained values were close to the Thot and Tcold temperature difference value estimated in the conceptual design of the SMR. The K-factor was calculated from the flow analysis data of the CFX model and applied to an analysis model in RELAP5/MOD3.3, the optimal analysis system code for nuclear power plants. The CFX analysis results and RELAP analysis results were evaluated in terms of the internal flow characteristics per core output. The two codes, which model the same nuclear power plant, have different flow analysis schemes but can be used complementarily. In particular, it will be useful to carry out detailed studies of the timing of the steam generator intervention when an SMR is activated. The thermal and hydraulic characteristics of the models that applied porous media to the core & steam generators and the models that embodied the entire detail shape were compared and analyzed. Although there were differences in the ability to analyze detailed flow characteristics at some low powers, it was confirmed that there was no significant difference in the thermal hydraulic characteristics' analysis of the SMR system's conceptual design.