• Title/Summary/Keyword: Transient analyses

검색결과 331건 처리시간 0.029초

원자로 직접주입노즐의 피로평가에 미치는 응력집중계수의 영향 (Effect of Stress Concentration Factors on the Fatigue Evaluation of the Direct Vessel Injection Nozzle)

  • 김태순;이재곤
    • 한국안전학회지
    • /
    • 제25권6호
    • /
    • pp.53-59
    • /
    • 2010
  • A fatigue damage caused by cyclic load is considered as one of the important failure mechanisms that threaten the integrity of structures and components in a nuclear power plant. In ASME code section III NB, the fatigue analysis procedure and standard S-N curves for the class 1 components are described and these criteria should be met at the design step of components. As the current ASME S-N curves are based on the very conservative assumptions such as a local stress concentration effect, immoderate transient frequencies and a constant Young's modulus, however, they can not precisely address the fatigue behavior of components. In order to find out the technical solution for these problems, a number of researches and discussion have been carried out continuously at home and abroad over the decades. In this study, detailed fatigue analyses for DVI nozzle with various mesh density of finite elements were performed to evaluate effect of stress concentration factors on the fatigue analysis procedure and the excessive conservatism of stress concentration factors are confirmed through the analysis results.

원전 이차계통 파이프 감육상태 분석를 위한 적응 콘-커널 시간-주파수 분포함수 (Adaptive Cone-Kernel Time-Frequency Distribution for Analyzing the Pipe-Thinning in the Secondary Systems of NPP)

  • 김정택;이상정;이철권
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제55권3호
    • /
    • pp.131-137
    • /
    • 2006
  • The secondary system of nuclear power plants consists of sophisticated piping systems operating in very aggressive erosion and corrosion environments, which make a piping system vulnerable to the wear and degradation due to the several chemical components and high flow rate (~10 m/sec) of the coolant. To monitor the wear and degradation on a pipe, the vibration signals are measured from the pipe with an accelerometer For analyzing the vibration signal the time-frequency analysis (TFA) is used, which is known to be effective for the analysis of time-varying or transient signals. To reduce the inteferences (cross-terms) due to the bilinear structure of the time-frequency distribution, an adaptive cone-kernel distribution (ACKD) is proposed. The cone length of ACKD to determine the characteristics of distribution is optimally selected through an adaptive algorithm using the normalized Shannon's entropy And the ACKD's are compared with the results of other analyses based on the Fourier Transform (FT) and other TFA's. The ACKD shows a better signature for the wear/degradation within a pipe and provides the additional information in relation to the time that any analysis based on the conventional FT can not provide.

상대식 승강장에서 열차 운행에 의한 지하철 승강장 스크린 도어 풍압해석 (WIND PRESSURE TRANSIENTS ON PLATFORM SCREEN DOOR OF SIDE PLATFORMS IN A SUBWAY STATION CAUSED BY PASSING TRAINS)

  • 이명성;이상혁;허남건
    • 한국전산유체공학회지
    • /
    • 제12권4호
    • /
    • pp.1-6
    • /
    • 2007
  • In the present study, the wind pressure transients on platform screen door in side platforms caused by passing trains have been investigated numerically. The transient compressible 3-D full Navier-Stokes solution is used with actual operational condition of subway train by adopting the moving mesh technique considering the train movement. To achieve more accurate analysis, the entrance and exit tunnel connecting the stations are included in a computational domain with modeling the detailed shape of the train. Numerical analyses are conducted on five operational conditions which include the variation of the train speed, case with or without the train stopped in the other track, and case for two trains passing each other inside the station. The results show that pressure load on platform screen door is maximized when the two trains are passing each other. It is also seen from the computational results that the maximum pressure variation for the cases considered in the present study is found to be satisfactory to various foreign standards.

물-기체 2상 유동 해석을 위한 Semi-Implicit 방법의 대류항에 대한 2차 정확도 확장 (IMPLEMENTATION OF A SECOND-ORDER INTERPOLATION SCHEME FOR THE CONVECTIVE TERMS OF A SEMI-IMPLICIT TWO-PHASE FLOW ANALYSIS SOLVER)

  • 조형규;이희동;박익규;정재준
    • 한국전산유체공학회지
    • /
    • 제14권4호
    • /
    • pp.13-22
    • /
    • 2009
  • A two-phase (gas and liquid) flow analysis solver, named CUPID, has been developed for a realistic simulation of transient two-phase flows in light water nuclear reactor components. In the CUPID solver, a two-fluid three-field model is adopted and the governing equations are solved on unstructured grids for flow analyses in complicated geometries. For the numerical solution scheme, the semi-implicit method of the RELAP5 code, which has been proved to be very stable and accurate for most practical applications of nuclear thermal hydraulics, was used with some modifications for an application to unstructured non-staggered grids. This paper is concerned with the effects of interpolation schemes on the simulation of two-phase flows. In order to stabilize a numerical solution and assure a high numerical accuracy, the second-order upwind scheme is implemented into the CUPID code in the present paper. Some numerical tests have been performed with the implemented scheme and the comparison results between the second-order and first-order upwind schemes are introduced in the present paper. The comparison results among the two interpolation schemes and either the exact solutions or the mesh convergence studies showed the reduced numerical diffusion with the second-order scheme.

복합전력계통 신뢰도평가의 확률론적 안전도 도입 (The Implementation of Probabilistic Security Analysis in Composite Power System Reliability)

  • 차준민;권세혁;김형철
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제55권5호
    • /
    • pp.185-190
    • /
    • 2006
  • The security analysis relates to the ability of the electric systems to survive sudden disturbances such as electric short circuits or unanticipated loss of system elements. It is composed of both steady state and dynamic security analyses, which are not two separate issues but should be considered together. In steady state security analysis including voltage security analysis, the analysis checks that the system is operated within security limits by OPF (optimal power flow) after the transition of a new operating point. On the other hand, dynamic security analysis deals that the transition will lead to an acceptable operating condition. Transient stability, which is the ability of power systems to maintain synchronism when subjected to a large disturbance, is a principal component in dynamic security analysis. Usually any loss of synchronism will cause additional outages. They make the present steady state analysis of the post-contingency condition inadequate for unstable cases. This is the reason of the need for dynamics of systems. Probabilistic criterion can be used to recognize the probabilistic nature of system components and shows the possibility of system security. A comprehensive conceptual framework for probabilistic static and dynamic assessment is presented in this paper. The simulation results of the Western System Coordinating Council (WSCC) system compare an analytical method with Monte-Carlo simulation (MCS). Also, a case study of the extended IEEE Reliability Test System (RTS) shows the efficiency of this approach.

지중배전시스템의 개선된 중성점 접지방식 제안과 실효성에 대한 해석적 평가 (Proposition of Improved Neutral Grounding Method and Analytical Evaluation on Practicality in Underground Distribution System)

  • 정석산;이종범;장성환;김용갑;권신남
    • 전기학회논문지
    • /
    • 제60권3호
    • /
    • pp.479-485
    • /
    • 2011
  • In 22.9kV underground distribution system, power cables are provided with multiple-point ground in which each neutral line of the distribution cable(A, B, C phases) and three-wire common grounded at every connecting section. But in such grounding methods, circulating current flows between the neutral wire and grounding wire. And power loss due to circulating current also occurs in all conductors. Therefore it is getting necessary reducing circulating current in underground distribution system. This paper presents improved grounding method to overcome such problems. The proposed grounding method eliminates circulating current in the neutral line effectively and is verified that there is no electrical problem or any ineffectiveness of operating protection systems. These analyses are carried out by EMTP/ATPDraw to compare each grounding methods in steady and transient state. This grounding method suggested in this paper can be applied on real distribution system after field tests considering elimination of circulating current was implemented.

대형 화력발전기 전력계통 안정화장치(IEEEST-PSS)의 정수선정 기법과 실계통 적용: PART II - PSS 현장 성능시험 절차 및 성능검증 (A Tuning Method for the Power System Stabilizer of a Large Thermal Power Plant and Its Application to Real Power System : PART II - Field Tests and Verification of PSS Performance)

  • 신정훈;남수철;백승묵;송지영;이재걸;김태균
    • 조명전기설비학회논문지
    • /
    • 제25권8호
    • /
    • pp.114-121
    • /
    • 2011
  • This paper, as the second part of the paper, dealt with the field test and test results to validate PSS(Power System Stabilizer) parameters which are previously tuned in Part 1 paper. In Part 1 of the paper, the selection of parameters such as lead-lag time constants for phase compensation and system gain was optimized by using linear & eigenvalue analyses and they were verified through the time-domain transient stability analysis. In part 2, the performance of PSS was finally verified by the generator's on-line field test. Through the comparisons of simulation results and measured data before and after tuning of the PSS, the models of generator and its controllers including AVR, Governor and PSS used in the simulation are verified and confirmed.

SEBIM POSRV를 이용한 원자로 냉각재계통의 과압보호 해석 (RCS Overpressure Protection Analysis Using SEBIM POSRV)

  • Kim, Chong-Hoon;Seo, Jong-Tae
    • Nuclear Engineering and Technology
    • /
    • 제27권2호
    • /
    • pp.165-175
    • /
    • 1995
  • 가압경수로의 과압보호계통은 가장 심각한 비정상 과도운전시 원자로냉각재계통의 압력을 설계압력의 110% 이내로 유지시킬 수 있는 충분한 용량으로 설계되어져야 한다. 본 연구에서는 ABB-CE 설계의 2825 MWt 가압경수로에 기존의 스프링 탑재형 가압기 안전밸브 대신 SEBIM-POSRV를 채택할 경우 과압보호 기능 수행의 가능성을 연구하였다. 과압보호 기능을 수행하기 위한 SEBIM POSRV의 크기 및 작동 설정치를 영광 3, 4호기의 과압보호 해석에 사용했던 LTC 전산코드를 이용한 분석을 통해서 결정했다. 분석 결과 monobloc SEBIM POSRV를 이용한 과압보호계통은 원자로냉각재계통의 압력을 설계 압력의 110% 이내로 유지시킴으로써 ABB-CE 형태의 2825 MWt급 가압경수로에서 과압보호 기능을 수행할 수 있음이 입증되었다.

  • PDF

DEVELOPMENT OF THE MATRA-LMR-FB FOR FLOW BLOCKAGE ANALYSIS IN A LMR

  • Ha, Kwi-Seok;Jeong, Hae-Yong;Chang, Won-Pyo;Kwon, Young-Min;Cho, Chung-Ho;Lee, Yong-Bum
    • Nuclear Engineering and Technology
    • /
    • 제41권6호
    • /
    • pp.797-806
    • /
    • 2009
  • The Multichannel Analyzer for Transient and steady-state in Rod Array - Liquid Metal Reactor for Flow Blockage analysis (MATRA-LMR-FB) code for the analysis of a subchannel blockage has been developed and evaluated through several experiments. The current version of the code is improved here by the implementation of a distributed resistance model which accurately considers the effect of flow resistance on wire spacers, by the addition of a turbulent mixing model, and by the application of a hybrid scheme for low flow regions. Validation calculations for the MATRA-LMR-FB code were performed for Oak Ridge National Laboratory (ORNL) 19-pin tests with wire spacers and Karlsruhe 169-pin tests with grid spacers. The analysis of the ORNL 19-pin tests conducted using the code reveals that the code has sufficient predictive accuracy, within a range of 5 $^{\circ}C$, for the experimental data with a blockage. As for the results of the analyses, the standard deviation for the Karlsruhe 169-pin tests, 0.316, was larger than the standard deviation for the ORNL 19-pin tests, 0.047.

Establishment of a Micro-Particle Bombardment Transformation System for Dunaliella salina

  • Tan Congping;Qin Song;Zhang Qun;Jiang Peng;Zhao Fangqing
    • Journal of Microbiology
    • /
    • 제43권4호
    • /
    • pp.361-365
    • /
    • 2005
  • In this study, we chronicle the establishment of a novel transformation system for the unicellular marine green alga, Dunaliella salina. We introduced the CaMV35S promoter-GUS construct into D. salina with a PDS1000/He micro-particle bombardment system. Forty eight h after transformation, via histochemical staining, we observed the transient expression of GUS in D. salina cells which had been bombarded under rupture-disc pressures of 450 psi and 900 psi. We observed no GUS activity in either the negative or the blank controls. Our findings indicated that the micro-particle bombardment method constituted a feasible approach to the genetic transformation of D. salina. We also conducted tests of the cells' sensitivity to seven antibiotics and one herbicide, and our results suggested that 20 ${\mu}g$/ ml of Basta could inhibit cell growth completely. The bar gene, which encodes for phosphinothricin acetyltransferase and confers herbicide tolerance, was introduced into the cells via the above established method. The results of PCR and PCR-Southern blot analyses indicated that the gene was successfully integrated into the genome of the transformants.