• 제목/요약/키워드: Transient Receptor Potential Channel

검색결과 71건 처리시간 0.023초

pH-mediated Regulation of Pacemaker Activity in Cultured Interstitial Cells of Cajal

  • Kim, Byung-Joo;Lee, Jae-Hwa;So, In-Suk;Kim, Ki-Whan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제10권1호
    • /
    • pp.7-11
    • /
    • 2006
  • Interstitial cells of Cajal (ICCs) are pacemakers in gastrointestinal tracts, regulating rhythmicity by activating nonselective cation channels (NSCCs). In the present study, we investigated the general characteristics and pH-mediated regulation of pacemaker activity in cultured interstitial cells of Cajal. Under voltage clamp mode and at the holding potential of -60 mV, the I-V relationships and difference current showed that there was no reversal potential and voltage-independent inward current. Also, when the holding potentials were changed from +20 mV to -80 mV with intervals of 20 mV, there was little difference in inward current. In pacemaker activity, the resting membrane potential (RMP) was depolarized (In pH 5.5, $23{\pm}1.5$ mV depolarized) and the amplitude was decreased by a decrease of the extracellular pH. However, in case of increase of extracellular pH, the RMP was slightly hyperpolarized and the amplitude was decreased a little. The melastatin type transient receptor potential (TRPM) channel 7 has been suggested to be required for intestinal pacemaking activity. TRPM7 produced large outward currents and small inward currents by voltage ramps, ranging from +100 to -100 mV from a holding potential of -60 mV. The inward current of TRPM7 was dramatically increased by a decrease in the extracellular pH. At pH 4.0, the average inward current amplitude measured at -100 mV was increased by about 7 fold, compared with the current amplitude at pH 7.4. Changes in the outward current (measured at +100 mV) were much smaller than those of the inward current. These results indicate that the resting membrane potential of pacemaking activity might be depolarized by external acidic pH through TRPM7 that is required for intestinal pacemaking activity.

Effects of Ulmi Pumilae Cortex on AGS Gastric Cancer Cells

  • Lim, Bora;Lee, Hee Jung;Kim, Min Chul;Kim, Byung Joo
    • 대한약침학회지
    • /
    • 제16권2호
    • /
    • pp.55-61
    • /
    • 2013
  • Objective: Ulmi Pumilae Cortex (UPC) is a deciduous tree with uneven pinnate leaves and is classified as a subfamily of Ulmuceae and contains many pharmacologically active constituents. The aim of this study was to investigate the effects of UPC on the growth and survival of AGS cells, the most common human gastric adenocarcinoma cell lines. Methods: The AGS cells were treated with varying concentrations of UPC. Analyses of the sub G1, caspase-3 activity, and mitochondrial depolarization were conducted to determine whether AGS cell death occured by apoptosis. Furthermore, to identify the role of the transient receptor potential melastatin (TRPM) 7 channels in AGS cell growth and survival, we used human embryonic kidney (HEK) 293 cells overexpressed with TRPM7 channels. Results: The addition of UPC to a culture medium inhibited AGS cell growth and survival. Experimental results showed that the sub G1, caspase-3 activity, and mitochondrial depolarization were increased. Furthermore, TRPM7 channel overexpression in HEK 293 cells exacerbated UPC-induced cell death. Conclusion: These findings indicate that UPC inhibits the growth and survival of gastric cancer cells due to a blockade of the TRPM7 channel activity. Therefore, UPC is a potential drug for treatment of gastric cancer, and TRPM7 channels may play an important role in survival in cases of gastric cancer.

TRPC4 Is an Essential Component of the Nonselective Cation Channel Activated by Muscarinic Stimulation in Mouse Visceral Smooth Muscle Cells

  • Lee, Kyu Pil;Jun, Jae Yeoul;Chang, In-Youb;Suh, Suk-Hyo;So, Insuk;Kim, Ki Whan
    • Molecules and Cells
    • /
    • 제20권3호
    • /
    • pp.435-441
    • /
    • 2005
  • Classical transient receptor potential channels (TRPCs) are thought to be candidates for the nonselective cation channels (NSCCs) involved in pacemaker activity and its neuromodulation in murine stomach smooth muscle. We aimed to determine the role of TRPC4 in the formation of NSCCs and in the generation of slow waves. At a holding potential of -60 mV, $50{\mu}M$ carbachol (CCh) induced $I_{NSCC}$ of amplitude [$500.8{\pm}161.8pA$ (n = 8)] at -60 mV in mouse gastric smooth muscle cells. We investigated the effects of commercially available antibodies to TRPC4 on recombinant TRPC4 expressed in HEK cells and CCh-induced NSCCs in gastric smooth muscle cells. TRPC4 currents in HEK cells were reduced from $1525.6{\pm}414.4pA$ (n = 8) to $146.4{\pm}83.3pA$ (n = 10) by anti-TRPC4 antibody and $I_{NSCC}$ amplitudes were reduced from $230.9{\pm}36.3pA$ (n = 15) to $49.8{\pm}11.8pA$ (n = 9). Furthermore, $I_{NSCC}$ in the gastric smooth muscle cells of TRPC4 knockout mice was only $34.4{\pm}10.4pA$ (n = 8) at -60 mV. However, slow waves were still present in the knockout mice. Our data suggest that TRPC4 is an essential component of the NSCC activated by muscarinic stimulation in the murine stomach.

Expression of vesicular glutamate transporter in transient receptor potential vanilloid 1-positive neurons in the rat trigeminal ganglion

  • Han, Hye Min;Cho, Yi Sul;Bae, Yong Chul
    • International Journal of Oral Biology
    • /
    • 제46권3호
    • /
    • pp.119-126
    • /
    • 2021
  • Activation of transient receptor potential vanilloid 1 (TRPV1), a calcium permeable channel expressed in primary sensory neurons, induces the release of glutamate from their central and peripheral afferents during normal acute and pathological pain. However, little information is available regarding the glutamate release mechanism associated with TRPV1 activation in primary sensory neurons. To address this issue, we investigated the expression of vesicular glutamate transporter (VGLUT) in TRPV1-immunopositive (+) neurons in the rat trigeminal ganglion (TG) under normal and complete Freund's adjuvant (CFA)-induced inflammatory pain conditions using behavioral testing as well as double immunofluorescence staining with antisera against TRPV1 and VGLUT1 or VGLUT2. TRPV1 was primarily expressed in small and medium-sized TG neurons. TRPV1+ neurons constituted approximately 27% of all TG neurons. Among all TRPV1+ neurons, the proportion of TRPV1+ neurons coexpressing VGLUT1 (VGLUT1+/TRPV1+ neurons) and VGLUT2 (VGLUT2+/TRPV1+ neurons) was 0.4% ± 0.2% and 22.4% ± 2.8%, respectively. The proportion of TRPV1+ and VGLUT2+ neurons was higher in the CFA group than in the control group (TRPV1+ neurons: 31.5% ± 2.5% vs. 26.5% ± 1.2%, VGLUT2+ neurons: 31.8% ± 1.1% vs. 24.6% ± 1.5%, p < 0.05), whereas the proportion of VGLUT1+, VGLUT1+/TRPV1+, and VGLUT2+/TRPV1+ neurons did not differ significantly between the CFA and control groups. These findings together suggest that VGLUT2, a major isoform of VGLUTs, is involved in TRPV1 activation-associated glutamate release during normal acute and inflammatory pain.

Cloning of a novel ion channel candidate by in silico gene mining

  • Shim, Won-Sik;Kim, Man-Su;Yang, Young-Duk;Park, Seung-Pyo;Kim, Byung-Moon;Oh, Uh-Taek
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.1
    • /
    • pp.192.2-193
    • /
    • 2003
  • Capsaicin, a pungent ingredient in chili pepper, is known to excite sensory neurons that mediate pain sensation. This effect of capsaicin is determined by unique receptors and the capsaicin receptor (transient receptor potential subfamily V, member 1 (TRPV1)) was cloned recently. TRPV1 contains six transmembrane domains and three ankyrin repeats at N-terminal. This characteristic architecture is common in other ion channel in TRPV families. (omitted)

  • PDF

Transient Receptor Potential C4/5 Like Channel Is Involved in Stretch-Induced Spontaneous Uterine Contraction of Pregnant Rat

  • Chung, Seungsoo;Kim, Young-Hwan;Joeng, Ji-Hyun;Ahn, Duck-Sun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제18권6호
    • /
    • pp.503-508
    • /
    • 2014
  • Spontaneous myometrial contraction (SMC) in pregnant uterus is greatly related with gestational age and growing in frequency and amplitude toward the end of gestation to initiate labor. But, an accurate mechanism has not been elucidated. In human and rat uterus, all TRPCs except TRPC2 are expressed in pregnant myometrium and among them, TRPC4 are predominant throughout gestation, suggesting a possible role in regulation of SMC. Therefore, we investigated whether the TRP channel may be involved SMC evoked by mechanical stretch in pregnant myometrial strips of rat using isometric tension measurement and patch-clamp technique. In the present results, hypoosmotic cell swelling activated a potent outward rectifying current in G protein-dependent manner in rat pregnant myocyte. The current was significantly potentiated by $1{\mu}M$ lanthanides (a potent TRPC4/5 stimulator) and suppressed by $10{\mu}M$ 2-APB (TRPC4-7 inhibitor). In addition, in isometric tension experiment, SMC which was evoked by passive stretch was greatly potentiated by lanthanide ($1{\mu}M$) and suppressed by 2-APB ($10{\mu}M$), suggesting a possible involvement of TRPC4/5 channel in regulation of SMC in pregnant myometrium. These results provide a possible cellular mechanism for regulation of SMC during pregnancy and provide basic information for developing a new agent for treatment of premature labor.

이중탕, 육군자탕, 보중익기탕의 이상지질혈증 및 고혈압과 관련된 일과성 수용체 전압 바닐로이드 4 이온통로 조절에 관한 연구 (Effects of Leejung-tang, Rikkunshito, and Bojungikgi-tang on Transient Receptor Potential Vanilloid 4 Channels)

  • 김병주
    • 한방비만학회지
    • /
    • 제18권2호
    • /
    • pp.57-63
    • /
    • 2018
  • Objectives: Metabolic syndrome is defined by a cluster of major cardiovascular risk factors: obesity, insulin resistance, dyslipidemia, and arterial hypertension. Several members of a large family of nonselective cation entry channels, e.g., transient receptor potential vanilloid 4 (TRPV4) channels have been associated with the development of dyslipidemia and hypertension. The purpose of this study was to investigate the effects of Leejung-tang (Lizhong-tang), Rikkunshito, and Bojungikgi-tang (Buzhongyiqi-tang) on TRPV4 channel. Methods: Human embryonic kidney 293 cells stably transfected with the TRPV4 expression vectors were maintained in Dulbecco's modified Eagle's medium supplemented with 10% fetal bovine serum, 1% penicillin/streptomycin, $5{\mu}g/mL$ blasticidin, and 0.4 mg/mL zeocin in a humidified 20% $O_2/10%$ $CO_2$ atmosphere at $37^{\circ}C$. Whole-cell patch clamp recordings were obtained using an Axopatch 700B amplifier and pClamp v.10.4 software (Molecular Devices, San Jose, CA, USA), and signals were digitalized at 5 kHz using Digidata 1422A. Results: Leejung-tang and Rikkunshito (10, 30 and 50 mg/mL) had no effects on the TRPV4 whole-cell currents at dose dependent manner. However, Bojungikgi-tang (10, 30, and 50 mg/mL) inhibited the TRPV4 whole-cell currents in a dose dependent manner and the half maximal inhibitory concentration (IC50) of Bojungikgi-tang was 18.2 mg/mL. Conclusions: These results suggest that Bojungikgi-tang plays an important roles to inhibit the TRPV4 channel, suggesting that Bojungikgi-tang is considered one of the candidate agents for the treatment of metabolic syndrome such as dyslipidemia and hypertension.

Effects of NaOCl on the Intracellular Calcium Concentration in Rat Dorsal Root Ganglion Neurons

  • Lee, Hae-In;Chun, Sang-Woo
    • International Journal of Oral Biology
    • /
    • 제35권3호
    • /
    • pp.129-135
    • /
    • 2010
  • Recent studies have implicated reactive oxygen species (ROS) as determinants of the pathological pain caused by the activation of peripheral neurons. It has not been elucidated, however, how ROS activate the primary sensory neurons in the pain pathway. In this study, calcium imaging was performed to investigate the effects of NaOCl, a ROS donor, on the intracellular calcium concentration ($[Ca^{2+}]i$) in acutely dissociated dorsal root ganglion (DRG) neurons. DRG was sequentially treated with 0.2 mg/ml of both protease and thermolysin, and single neurons were then obtained by mechanical dissociation. The administration of NaOCl then caused a reversible increase in the $[Ca^{2+}]i$, which was inhibited by pretreatment with phenyl-N-tertbuthylnitrone (PBN) and isoascorbate, both ROS scavengers. The NaOCl-induced $[Ca^{2+}]i$ increase was suppressed both in a calcium free solution and after depletion of the intracellular $Ca^{2+}$ pool by thapsigargin. Additionally, this increase was predominantly blocked by pretreatment with the transient receptor potential (TRP) antagonists, ruthenium red ($50\;{\mu}M$) and capsazepine ($10\;{\mu}M$). Collectively, these results suggest that an increase in the intracellular calcium concentration is produced from both extracellular fluid and the intracellular calcium store, and that TRP might be involved in the sensation of pain induced by ROS.

Inhibition of Transient Receptor Potential Melastain 7 Enhances Apoptosis Induced by TRAIL in PC-3 cells

  • Lin, Chang-Ming;Ma, Ji-Min;Zhang, Li;Hao, Zong-Yao;Zhou, Jun;Zhou, Zhen-Yu;Shi, Hao-Qiang;Zhang, Yi-Fei;Shao, En-Ming;Liang, Chao-Zhao
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권10호
    • /
    • pp.4469-4475
    • /
    • 2015
  • Transient receptor potential melastain 7 (TRPM7) is a bifunctional protein with dual structure of both ion channel and protein kinase, participating in a wide variety of diseases including cancer. Recent researches have reported the mechanism of TRPM7 in human cancers. However, the correlation between TRPM7 and prostate cancer (PCa) has not been well studied. The objective of this study was to investigate the potential the role of TRPM7 in the apoptosis of PC-3 cells, which is the key cell of advanced metastatic PCa. In this study, we demonstrated the influence and potential function of TRPM7 on the PC-3 cells apoptosis induced by TNF-related apoptosis inducing-ligand (TRAIL). The study also found a novel up-regulated expression of TRPM7 in PC-3 cells after treating with TRAIL. Suppression of TRPM7 by TRPM7 non-specific inhibitors ($Gd^{3+}$ or 2-aminoethoxy diphenylborate (2-APB) ) not only markedly eliminated TRPM7 expression level, but also increased the apoptosis of TRAIL-treated PC-3 cells, which may be regulated by the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) signaling pathway accompany with up-regulated expression of cleaved Caspase-3, (TRAIL-receptor 1, death receptors 4) DR4, and (TRAIL-receptor 2, death receptors 5) DR5. Taken together, our findings strongly suggested that TRPM7 was involved in the apoptosis of PC-3 cells induced by TRAIL, indicating that TRPM7 may be applied as a therapeutic target for PCa.

Monitoring trafficking and expression of hemagglutinin-tagged transient receptor potential melastatin 4 channel in mammalian cells

  • Eun Mi Hwang;Bo Hyun Lee;Eun Hye Byun;Soomin Lee;Dawon Kang;Dong Kun Lee;Min Seok Song;Seong-Geun Hong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제27권4호
    • /
    • pp.417-426
    • /
    • 2023
  • The TRPM4 gene encodes a Ca2+-activated monovalent cation channel called transient receptor potential melastatin 4 (TRPM4) that is expressed in various tissues. Dysregulation or abnormal expression of TRPM4 has been linked to a range of diseases. We introduced the hemagglutinin (HA) tag into the extracellular S6 loop of TRPM4, resulting in an HA-tagged version called TRPM4-HA. This TRPM4-HA was developed to investigate the purification, localization, and function of TRPM4 in different physiological and pathological conditions. TRPM4-HA was successfully expressed in the intact cell membrane and exhibited similar electrophysiological properties, such as the current-voltage relationship, rapid desensitization, and current size, compared to the wild-type TRPM4. The presence of the TRPM4 inhibitor 9-phenanthrol did not affect these properties. Furthermore, a wound-healing assay showed that TRPM4-HA induced cell proliferation and migration, similar to the native TRPM4. Co-expression of protein tyrosine phosphatase, non-receptor type 6 (PTPN6 or SHP1) with TRPM4-HA led to the translocation of TRPM4-HA to the cytosol. To investigate the interaction between PTPN6 and tyrosine residues of TRPM4 in enhancing channel activity, we generated four mutants in which tyrosine (Y) residues were substituted with phenylalanine (F) at the N-terminus of TRPM4. The YF mutants displayed properties and functions similar to TRPM4-HA, except for the Y256F mutant, which showed resistance to 9-phenanthrol, suggesting that Y256 may be involved in the binding site for 9-phenanthrol. Overall, the creation of HA-tagged TRPM4 provides researchers with a valuable tool to study the role of TRPM4 in different conditions and its potential interactions with other proteins, such as PTPN6.