• Title/Summary/Keyword: Transgenic silkworm

Search Result 35, Processing Time 0.021 seconds

Single-dose oral toxicity study of genetically modified silkworm expressing EGFP protein in ICR mouse

  • Jang, Kyung-Min;Kim, Sung-Gun;Park, Ji-Young;Choi, Won-Ho;Lee, Jae-Woo;Jegal, Hyeon-Young;Kweon, Soon-Jong;Choi, Kwang-Ho;Park, Jung-Ho
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.1
    • /
    • pp.109-115
    • /
    • 2016
  • Silk has had a reputation as a luxurious and sensuous fabric but it is not popular due to the expensive price and poor durability. To develop the silk materials that apply the various industries, the artificially synthesized gene can be introduced into the silkworm and expressed in the silk gland. Transgenic silkworms for the mass production of green fluorescent silks are generated using a fibroin H-chain expression system. For commercial use, safety assessment of the transgenic silkworms is essential. The purpose of this study was to examine the potential acute oral toxicity of EGFP protein expressed in genetically modified (GM) fluorescence silkworm and to obtain the approximative lethal dose in the male and female at 6-weeks ICR mice. EGFP protein was fed at a dose of 2,000 mg/kg body weight in five male or five female mice. Mortalities, clinical findings and body weight changes were monitored for 1, 3, 7, 14 days after dosing. At the end of 14 day observation period, all mice were sacrificed, and the postmortem necropsy were performed. The test group was not observed death case. Also the effect was not admitted by test substance administration in common symptoms, the body weight and postmortem. The results of single-dose oral toxicity test showed that approximative lethal dose of EGFP protein expressed in fluorescence silkworm was considered to exceed the 2,000 mg/kg body weight in both sexes.

Modification of the commercial silkworm eggs adequate for Bluemoon0silkworm transgenesis (누에 형질전환에 적합한 실용품종 누에알의 제조)

  • Kim, Sung-Wan;Kang, Min-Uk;Kang, Seok-Woo;Yun, Eun-Young;Choi, Kwang-Ho;Kim, Seong-Ryul;Park, Seung-Won;Nho, SiKab;Goo, Tae-Won
    • Journal of Sericultural and Entomological Science
    • /
    • v.51 no.1
    • /
    • pp.73-77
    • /
    • 2013
  • Silkworm transgenesis scientists have done some genetic modification work on multivoltine silkworms, but that type of silkworms is less commercial feasible. They are easy to manipulate, because they breed all year round. But the commercial silkworm variety must undergo hydrochloric acid treatment at a high temperature to be artificially hatched. Hydrochloric acid penetrates through the holes in the silkworm eggs, fatally damaging their reproduction. So it had been thought that altering the properties of the commercial silkworm variety would be very difficult. So we have tried to make from diapause to non-diapause eggs using diapauses varieties, 'Backokjam' and 'Jam 124'. At present, our group has establishing the conditions for non-diapause eggs. Oviposited eggs after 40 ~ 60 hours were incubated for 24 hours at $15{\sim}20^{\circ}C$ with dark condition. Non-diapause eggs were completely induced. The hatching rate, molting rate and pupation rate of non-diapause 'Jam 124' and 'Backokjam' eggs showed no differences compared to diapause eggs. When transgenic silkworm using the non-diapause eggs, the hatching rate showed that non-diapause eggs induced from diapause were 40 ~ 70%, diapause eggs treated with artificial incubation were 10 ~ 30%, and polyvoltine strains, HM eggs were 30 ~ 50%. Therefore, we suggest that modification techniques of the commercial silkworm eggs adequate for silkworm transgenesis can be used to develop transgenic silkworms more easily.

Production of the melittin antimicrobial peptide in transgenic silkworm (멜리틴 항균펩타이드를 생산하는 형질전환누에)

  • Kim, Seong Wan;Goo, Tae Won;Kim, Seong Ryul;Park, Seung Won;Choi, Kwang-Ho
    • Journal of Sericultural and Entomological Science
    • /
    • v.53 no.1
    • /
    • pp.55-60
    • /
    • 2015
  • Melittin is the main component of Bee Venom and has antibacterial activity against several bacteria. To produce the melittin antimicrobial peptide, we constructed transgenic silkworm that expressed melittin gene under the control BmA3 promoter using piggyBac vector. The use of the 3xP3-driven EGFP cDNA as a marker allowed us to rapidly distinguish transgenic silkworm. Mixtures of the donor vector and helper vector were micro-injected into 300 eggs of bivoltin silkworms, Baegokjam. In total, 131 larvae (G0) were hatched and allowed to develop into moths. The resulting G1 generation consisted of 36 broods, and we selected 4 broods containing at least 1 EGFP-positive embryo. The rate of successful transgenesis for the G1 broods was 11%. We identified 12 EGFP-positive G1 moths and these were backcrossed with wild-type moths. With the aim of identifying a melittin as antimicrobial peptide, we investigated the Radical diffusion Assay (RDA) and then demonstrated that melittin possesses high antibacterial activities against gramnegative bacteria.

Expression of the blue fluorescent protein in fibroin H-chain of transgenic silkworm (피브로인 H-chain 재조합 단백질 발현시스템을 이용한 청색형광단백질의 발현)

  • Kim, Seong Wan;Yun, Eun Young;Choi, Kwang-Ho;Kim, Seong Ryul;Park, Seung Won;Kang, Seok Woo;Goo, Tae Won
    • Journal of Sericultural and Entomological Science
    • /
    • v.52 no.1
    • /
    • pp.25-32
    • /
    • 2014
  • We produced the transgenic silkworm that expressed the enhanced blue fluorescent protein (EBFP) in the cocoon of silkworms. The EBFP fusion protein, each with N- and C-terminal sequences of the fibroin H-chain, was designed to be secreted into the lumen of the posterior silk glands. The expression of the EBFP/H-chain fusion gene was regulated by the fibroin H-chain promoter. The use of the $3{\times}P3$-driven DsRed2 cDNA as a marker allowed us to rapidly distinguish transgenic silkworm. A mixture of the donor and helper vector was micro-injected into 300 eggs of silkworms, Baegokjam. We obtained 5 broods. The cocoon displayed blue fluorescence, proving that the fusion protein was present in the cocoon. Also, the presence of fusion proteins in cocoons was demonstrated by SDS-PAGE and western blot analysis. Accordingly, we suggest that the EBFP fluorescence silk will enable the production of the silk-based biomaterials.

Production of the yellow fluorescent silk using the fibroin heavy chain protein expression system in transgenic silkworm (피브로인 H-chain 재조합 단백질 발현시스템을 이용한 황색형광실크의 제작)

  • Kim, Seong Wan;Choi, Kwang-Ho;Kim, Seong Ryul;Yun, Eun Young;Park, Seung Won;Kang, Seok Woo;Goo, Tae Won
    • Journal of Sericultural and Entomological Science
    • /
    • v.52 no.2
    • /
    • pp.102-109
    • /
    • 2014
  • We constructed the fibroin H-chain expression system to produce enhanced yellow fluorescent proteins (EYFP) in the silk of transgenic silkworm. Fluorescent silk could be made by fusing EYFP cDNA to the heavy chain gene and injecting it into a silkworm. The EYFP fusion protein, each with N- and C-terminal sequences of the fibroin H-chain, was designed to be secreted into the lumen of the posterior silk glands. The expression of the EYFP/H-chain fusion gene was regulated by the fibroin H-chain promoter. The yellow fluorescence proving that the fusion protein was present in the silk. Accordingly, we suggest that the EYFP fluorescence silk will enable the production of novel biomaterial based on the transgenic silk.

Construction of fluorescent red silk using fibroin H-chain expression system (누에 형질전환에 의한 견사선에서의 적색형광단백질 발현)

  • Kim, Sung Wan;Yun, Eun Young;Choi, Kwang-Ho;Kim, Seong Ryul;Park, Seung Won;Kang, Seok Woo;Kwon, O-Yu;Goo, Tae Won
    • Journal of Sericultural and Entomological Science
    • /
    • v.50 no.2
    • /
    • pp.87-92
    • /
    • 2012
  • We constructed the fibroin H-chain expression system to produce Discosoma sp. red fluorescent protein variant2 (DsRed2) in transgenic silkworm cocoon. Fluorescent cocoon could be made by fusing DsRed2 cDNA to the heavy chain gene and injecting it into a silkworm. The DsRed2 fusion protein, each with N- and C-terminal sequences of the fibroin H-chain, was designed to be secreted into the lumen of the posterior silk glands. The expression of the DsRed2/H-chain fusion gene was regulated by the fibroin H-chain promoter. The use of the 3xP3-driven EGFP cDNA as a marker allowed us to rapidly distinguish transgenic silkworms. The EGFP fluorescence became visible in the ocelli and in the central and peripheral nervous system on the seventh day of embryonic development. A mixture of the donor and helper vector was micro-injected into 1,020 Kumokjam, bivoltin silkworm eggs. We obtained 6 broods. The cocoon was displayed strong red fluorescence, proving that the fusion protein was present in the cocoon. Accordingly, we suggest that the DsRed2 fluorescence silk will enable the production of novel biomaterial based on the transgenic silk.

Construction of the Silkworm, Bombyx mori, with a Green Fluorescence by Autographa californica Nuclear Polyhedrosis Virus

  • Jin, Byung-Rae;Yun, Eun-Young;Kang, Seok-Woo;Yoon, Hyung-Joo;Kim, Keun-Young;Kim, Ho-Rak;Je, Yeon-Ho;Kang, Seok-Kwon
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.1 no.2
    • /
    • pp.149-153
    • /
    • 2000
  • We have constructed a recombinant baculovirus, Autographa californica nuclear polyhedrosis virus (AcNPV), containing green fluorescent protein (GFP) gene from the jellyfish, Aequorea victoria, and transferred it into the domestic silkworm Bombyx mori larvae for the production of visible transgenic silkworm of living organism. When one day-old fifth instar female larvae were injected with the recombinant AcNPV of 1x10$^{5}$ plaque forming units, the bright glow of GFP was detected in the recombinant AcNPV-infected larvae and in the newly hatched larvae of the next generation. Our findings demonstrate that the viral replication was detected in the silkworm treated with the recombinant ACNPV and the gfp gene was expressed under the transcriptional control of the polyhedrin gene promoter, Furthermore, the gfp gene was transmitted to the next generation, suggesting that this system can be applied for the development of transgenic silkworms.

  • PDF

Production of fluorescent green silk using fibroin H-chain expression system (피브로인 H-chain 재조합 단백질 발현시스템을 이용한 녹색형광실크 생산)

  • Kim, Seong Wan;Yun, Eun Young;Choi, Kwang-Ho;Kim, Seong Ryul;Park, Seung Won;Kang, Seok Woo;Goo, Tae Won
    • Journal of Sericultural and Entomological Science
    • /
    • v.51 no.2
    • /
    • pp.153-158
    • /
    • 2013
  • To express green fluorescent protein in the cocoon of silkworm, we constructed the fibroin H-chain expression system to produce enhanced green fluorescent protein (EGFP) in the cocoon of transgenic silkworms. The EGFP fusion protein, each with N- and C-terminal sequences of the fibroin H-chain, was designed to be secreted into the lumen of the posterior silk glands. The expression of the EGFP/H-chain fusion gene was regulated by the fibroin H-chain promoter. The use of the 3xP3-driven DsRed2 cDNA as a marker allowed us to rapidly distinguish transgenic silkworm. A mixture of the donor and helper vector was micro-injected into 1,200 eggs of bivoltin silkworms, Baegokjam. We obtained 8 broods. The cocoon displayed strong green fluorescence, proving that the fusion protein was present in the cocoon. Also, the presence of fusion proteins in cocoons was demonstrated by SDS-PAGE and immunoblotting. Accordingly, we suggest that the EGFP fluorescence silk will enable the production of the novel biomaterial based on the transgenic silk.

The Homologous Region 3 from Bombyx mori Nucleopolyhedrovirus Enhancing the Transcriptional Activity of Drosophila hsp70 Promoter

  • Tang, Shun-Ming;Yi, Yong-Zhu;Zhou, Ya-Jing;Zhang, Zhi-Fang;Li, Yi-Ren;He, Jia-Lu
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.9 no.2
    • /
    • pp.235-239
    • /
    • 2004
  • Drosophila melanogaster heat shock protein 70 gene promoter (Dhsp70p) is widely used in transgenic insect to drive exogenous gene, and the homologous region 3 from Bombyx mori nucleopolyhedrovirus (BmNPVhr3) functions as an enhancer for several promoters. To test whether BmNPVhr3 can enhance the Dhsp70ps transcriptional activity, the reporter plasmids, which contain the Dhsp70p, the reporter $\beta$-galactosidase gene with SV40 terminator and BmNPVhr3 fragment, are constructed and transfected into the insect cell lines (Bm-N cells and Sf-21 cells) by lipofectin-mediated method. The results from the transient expression assay show that BmNPVhr3 significantly increases transcriptional activity of Dhsp70p both under the normal condition and under the heat-shock treatment, although the effects are significantly different between in Bm-N cells and in sf-21 cells. The enhancing behavior of BmNPVhr3 on the Dhsp70p is in an orientation-independent manner. Meanwhile, the effects of heat-shock treatment on Dhsp70p alone or Dhsp70p/BmNPVhr3 combination present no significant difference, indicating that BmNPVhr3 only enhances the transcriptional activity of Dhsp70p, but cant alter its characteristic of the response to the heat-shock stress. The above results suggest that the Dhsp70p/BmNPVhr3 combination is more effective one to drive exogenous gene for transgene or stable cell expression system in insects.