• Title/Summary/Keyword: Transforming growth factor(TGF)-${\beta}1$

Search Result 296, Processing Time 0.032 seconds

CTRP9 Regulates Growth, Differentiation, and Apoptosis in Human Keratinocytes through TGFβ1-p38-Dependent Pathway

  • Jung, Tae Woo;Park, Hyung Sub;Choi, Geum Hee;Kim, Daehwan;Lee, Taeseung
    • Molecules and Cells
    • /
    • v.40 no.12
    • /
    • pp.906-915
    • /
    • 2017
  • Impairment of wound healing is a common problem in individuals with diabetes. Adiponectin, an adipocyte-derived cytokine, has many beneficial effects on metabolic disorders such as diabetes, obesity, hypertension, and dyslipidemia. C1q/TNF-Related Protein 9 (CTRP9), the closest paralog of adiponectin, has been reported to have beneficial effects on wound healing. In the current study, we demonstrate that CTRP9 regulates growth, differentiation, and apoptosis of HaCaT human keratinocytes. We found that CTRP9 augmented expression of transforming growth factor beta 1 ($TGF{\beta}1$) by transcription factor activator protein 1 (AP-1) binding activity and phosphorylation of p38 in a dose-dependent manner. Furthermore, siRNA-mediated suppression of $TGF{\beta}1$ reversed the increase in p38 phosphorylation induced by CTRP9. siRNA-mediated suppression of $TGF{\beta}1$ or p38 significantly abrogated the effects of CTRP9 on cell proliferation and differentiation while inducing apoptosis, implying that CTRP9 stimulates wound recovery through a $TGF{\beta}1$-dependent pathway in keratinocytes. Furthermore, intravenous injection of CTRP9 via tail vein suppressed mRNA expression of Ki67 and involucrin whereas it augmented $TGF{\beta}1$ mRNA expression and caspase 3 activity in skin of type 1 diabetes animal models. In conclusion, our results suggest that CTRP9 has suppressive effects on hyperkeratosis, providing a potentially effective therapeutic strategy for diabetic wounds.

The Effect of Mineral Trioxide Aggregate on the Production of Growth Factors and Cytokine by Human Periodontal Ligament Fibroblasts (Mineral trioxide aggregate (MTA)가 치주인대 섬유아세포에서 분비되는 cytokine과 성장인자 TGF-β1, FGF-2 발현에 미치는 영향)

  • Kwon, Ji-Yoon;Lim, Sung-Sam;Baek, Seung-Ho;Bae, Kwang-Shik;Kang, Myung-Hoe;Lee, Woo-Cheol
    • Restorative Dentistry and Endodontics
    • /
    • v.32 no.3
    • /
    • pp.191-197
    • /
    • 2007
  • Mineral trioxide aggregate (MTA) would influence healing of periapical tissues by modulating the production of growth factors and cytokines from PDL fibroblasts, however, the studies are insufficient. Therefore, the purpose of this study was to monitor the expression of transforming growth factor-beta1 $(TGF-\beta1)$, fibroblast growth factor-2 (FGF-2), and interleukin-6 (IL-6) from PDL fibroblasts in the presence of MTA. The human PDL fibroblasts were seeded onto the set MTA or IRM at a level of $1\times10^5$ cells per unit well, and further incubated for 6, 12, 24, and 48 hours. The levels of $TGF-\beta1$, FGF-2 and IL-6 from the supernatant were measured by enzyme-linked immunosorbent assay (ELISA) The data were analyzed using one-way ANOVA. The level of $TGF-\beta1$ was down-reg ulated when the cells were grown in the presence of MTA except at 6 hours. The levels of FGF-2 release were significantly suppressed when PDL fibroblasts were grown in the presence of MTA or IRM at all time intervals (p < 0.05). The expressions of IL-6 from MTA treated co)Is were comparable to those of untreated control cells throughout the observation periods. We presume that this material inhibits the stimulatory function of growth factors on granulation tissue formation and in turn, it promotes the healing process modulated by other bone-remodeling cells.

Study of plasma TGF-β1 level as a useful tumor marker in gastric cancer and prostate cancer (위암 및 전립선암의 종양 표지 인자로서 혈장 TGF-β1에 대한 연구)

  • Lim, Chang Ki;Shin, Hoon;Choi, In Young;Chung, Byung Ha;Ryu, Min Hee;Bang, Yung Jue;Jin, Seung Won
    • IMMUNE NETWORK
    • /
    • v.1 no.3
    • /
    • pp.260-265
    • /
    • 2001
  • Transforming growth $factor-{\beta}1$ ($TGF-{\beta}1$) is a multipotent growth factor affecting development, homeostasis and tissue repair. Many kinds of malignant tissues were reported to overexpress transforming growth $factor-{\beta}1$ ($TGF-{\beta}1$) gene. However, a little work has been done on the circulating $TGF-{\beta}1$ and the association of $TGF-{\beta}1$ with progression in patients with malignant tumors. In this study, we measured the plasma level of $TGF-{\beta}1$ in gastric cancer and prostate cancer patients and evaluated the utility of plasma $TGF-{\beta}1$ as a possible tumor marker. We used Enzyme-linked immunosorbent assay (ELISA) system in order to measure plasma $TGF-{\beta}1$ level in 134 gastric cancer patients, 50 prostate cancer patients and 290 normal controls. And the tumor marker, carcinoembryonic antigen (CEA), prostate-specific antigen (PSA), was compared with $TGF-{\beta}1$ in the aspects of sensitivity and specificity. The mean plasma $TGF-{\beta}1$ levels were $1.219{\pm}0.834$ (0.272-5.772) ng/mL in normal controls, $5.964{\pm}3.218$ (0.845-18.124) ng/mL in gastric cancer and $4.140{\pm}2.345$ (1.108-13.302) ng/mL in prostate cancer. In gastric cancer patients difference in plasma $TGF-{\beta}1$ level was not detected according to cancer stage. In comparison with other tumor marker (CEA, PSA) $TGF-{\beta}1$ is more potent in sensitivity. These results indicate that the plasma $TGF-{\beta}1$ level can be a potent tumor marker in gastric cancer and prostate cancer.

  • PDF

Chondrogenic Differentiation of Bone Marrow Stromal Cells in Transforming Growth $Factor-{\beta}_{1}$ Loaded Alginate Bead

  • Park, Ki-Suk;Jin Chae-Moon;Kim, Soon-Hee;Rhee John M.;Khang Gil-Son;Han, Chang-Whan;Yang, Yoon-Sun;Kim, Moon-Suk;Lee, Hai-Bang
    • Macromolecular Research
    • /
    • v.13 no.4
    • /
    • pp.285-292
    • /
    • 2005
  • We developed alginate beads loaded with transforming growth $factor-{\beta}_{1}(TGF-{\beta}_{1})$ to examine the possible application of the scaffold and cytokine carrier in tissue engineering. In this study, bone marrow stromal cells (BMSCs) and $TGF{\beta}_{1}$ were uniformly encapsulated in the alginate beads and then cultured in vitro. The cell morphology and shape of the alginate beads were observed using inverted microscope, scanning electron microscope (SEM), histological staining and RT-PCR to confirm chondrogenic differentiation. The amount of the $TGF{\beta}_{1}$ released from the $TGF-{\beta}_{1}$ loaded alginate beads was analyzed for 28 days in vitro in a phosphate buffered saline (pH 7.4) at $37^{\circ}C$. We observed the release profile of $TGF-{\beta}_{1}$ from $TGF-{\beta}_{1}$ loaded alginate beads with a sustained release pattern for 35 days. Microscopic observation showed the open cell pore structure and abundant cells with a round morphology in the alginate beads. In addition, histology and RT-PCR results revealed the evidence of chondrogenic differentiation in the beads. In conclusion, these results confirmed that $TGF-{\beta}_{1}$ loaded alginate beads provide excellent conditions for chondrogenic differentiation.

Effects of Transforming Growth Factor Beta on Cytoskeleton Structure and Extracellular Matrix in Mv1Lu Mink Epithelial Cells

  • Choi, Eui-Yul;Lee, Kyung-Mee;Chung, So-Young;Nham, Sang-Uk;Yie, Se-Won;Chun, Gie-Taek;Kim, Pyeung-Hyun
    • BMB Reports
    • /
    • v.29 no.5
    • /
    • pp.405-410
    • /
    • 1996
  • Previous studies have shown that transforming growth factor beta ($TGF-{\beta}$) is a potent regulator of cell growth and differentiation. To study the effects of $TGF-{\beta}$ on cell morphology and cytoskeleton reorganization, we conducted a survey using Mv1Lu mink lung epithelial cells with antibodies to cytoskeletal proteins and an extracellular matrix protein. While the untreated cells showed a cuboidal shape of typical epithelia, the Mv1Lu cells displayed a drastic shape change in the presence of $TGF-{\beta}$. This alteration was most prominent when near-confluent cells were treated with $TGF-{\beta}$. Since the morphology alteration is known to be accompanied by the reorganization of cytoskeletal proteins in other cell types, we investigated the intracellular distribution of the three major cytoskeletal structures: microfilaments, microtubules, and intermediate filaments. In the microfilament system, $TGF-{\beta}$ induced new stress fiber formation, which was caused primarily by the polymerization of cytoplasmic G-actin. However, $TGF-{\beta}$ appeared not to induce any significant changes in microtubular structures and vimentin filaments as determined by indirect fluorescence microscopy. Finally we confirmed the rapid accumulation of fibronectin by immunoblot analysis and chased the protein locations by immunofluorescence microscopy.

  • PDF

Increased Serum Endoglin and Transforming Growth Factor β1 mRNA Expression and Risk of Hepatocellular Carcinoma in Cirrhotic Egyptian Patients

  • Teama, Salwa;Fawzy, Amal;Teama, Shirin;Helal, Amany;Drwish, Amira Diyaa;Elbaz, Tamer;Desouky, Eman
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.5
    • /
    • pp.2429-2434
    • /
    • 2016
  • Transforming growth factor-B1 ($TGF-{\beta}1$ )and its coreceptor endoglin (ENG) have been shown to contribute to hepatocellular tumor development and malignant progression. Our aim was to evaluate the serum expression levels of $ENG/TGF-{\beta}1$ mRNAs and risk of hepatocellular carcinoma in cirrhotic Egyptian patients. Our study included 77 subjects. Real time polymerase chain reaction was used to evaluate the expression level of ENG and $TGF-{\beta}1$mRNAs. The relative expression ratio of ENG mRNA was 0.82 (0.1 -3.2), 0.66 (0.15-5.3), 0.38(0.007-2.8) and 0.12 (0.00-0.22) and the relative expression ratio of $TGF-{\beta}1$mRNA was 1.4 (0.19 -6.2), 1.2 (0.22-4.3), 1.0 (0.15-4.4) and 0.6 (0.00-2.2) for cirrhotic HCC cirrhotic, HCC only and healthy control groups respectively. Increased ENG and $TGF-{\beta}1$ mRNA gene expression was correlated with TNM clinical stage. The expression ratio in TNM stage III-IV 1.1 (0.07-3.2), 1.55 (0.15-6.2) was statistically significantly higher than that in stage I-II 0.47 (0.007-2.8), 1.0 (0.31-4.4) (P<0.05). Our data suggested that increased ENG and $TGF-{\beta}1$ gene expression may participate in hepatocarcinogenesis and increased risk of HCC in individuals with cirrhosis. Early screening for evidence of cirrhosis and consideration of ENG and $TGF-{\beta}1$ as targets for therapy and treatment strategies are warranted.

Overview of Transforming Growth Factor β Superfamily Involvement in Glioblastoma Initiation and Progression

  • Nana, Andre Wendindonde;Yang, Pei-Ming;Lin, Hung-Yun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.16
    • /
    • pp.6813-6823
    • /
    • 2015
  • Glioblastoma, also known as glioblastoma multiforme (GBM), is the most aggressive of human brain tumors and has a stunning progression with a mean survival of one year from the date of diagnosis. High cell proliferation, angiogenesis and/or necrosis are histopathological features of this cancer, which has no efficient curative therapy. This aggressiveness is associated with particular heterogeneity of the tumor featuring multiple genetic and epigenetic alterations, but also with implications of aberrant signaling driven by growth factors. The transforming growth factor ${\beta}$ ($TGF{\beta}$) superfamily is a large group of structurally related proteins including $TGF{\beta}$ subfamily members Nodal, Activin, Lefty, bone morphogenetic proteins (BMPs) and growth and differentiation factor (GDF). It is involved in important biological functions including morphogenesis, embryonic development, adult stem cell differentiation, immune regulation, wound healing and inflammation. This superfamily is also considered to impact on cancer biology including that of GBM, with various effects depending on the member. The $TGF{\beta}$ subfamily, in particular, is overexpressed in some GBM types which exhibit aggressive phenotypes. This subfamily impairs anti-cancer immune responses in several ways, including immune cells inhibition and major histocompatibility (MHC) class I and II abolishment. It promotes GBM angiogenesis by inducing angiogenic factors such as vascular endothelial growth factor (VEGF), plasminogen activator inhibitor (PAI-I) and insulinlike growth factor-binding protein 7 (IGFBP7), contributes to GBM progression by inducing metalloproteinases (MMPs), "pro-neoplastic" integrins (${\alpha}v{\beta}3$, ${\alpha}5{\beta}1$) and GBM initiating cells (GICs) as well as inducing a GBM mesenchymal phenotype. Equally, Nodal promotes GICs, induces cancer metabolic switch and supports GBM cell proliferation, but is negatively regulated by Lefty. Activin promotes GBM cell proliferation while GDF yields immune-escape function. On the other hand, BMPs target GICS and induce differentiation and sensitivity to chemotherapy. This multifaceted involvement of this superfamily in GBM necessitates different strategies in anti-cancer therapy. While suppressing the $TGF{\beta}$ subfamily yields advantageous results, enhancing BMPs production is also beneficial.

Eupatilin treatment inhibits transforming growth factor beta-induced endometrial fibrosis in vitro

  • Lee, Chang-Jin;Hong, Seon-Hwa;Yoon, Min-Ji;Lee, Kyung-Ah;Choi, Dong Hee;Kwon, Hwang;Ko, Jung-Jae;Koo, Hwa Seon;Kang, Youn-Jung
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.47 no.2
    • /
    • pp.108-113
    • /
    • 2020
  • Objective: Endometrial fibrosis, the primary pathological feature of intrauterine adhesion, may lead to disruption of endometrial tissue structure, menstrual abnormalities, infertility, and recurrent pregnancy loss. At present, no ideal therapeutic strategy exists for this fibrotic disease. Eupatilin, a major pharmacologically active flavone from Artemisia, has been previously reported to act as a potent inducer of dedifferentiation of fibrotic tissue in the liver and lung. However, the effects of eupatilin on endometrial fibrosis have not yet been investigated. In this study, we present the first report on the impact of eupatilin treatment on transforming growth factor beta (TGF-β)-induced endometrial fibrosis. Methods: The efficacy of eupatilin on TGF-β-induced endometrial fibrosis was assessed by examining changes in morphology and the expression levels of fibrosis markers using immunofluorescence staining and quantitative real-time reverse-transcription polymerase chain reaction. Results: Eupatilin treatment significantly reduced the fibrotic activity of TGF-β-induced endometrial fibrosis in Ishikawa cells, which displayed more circular shapes and formed more colonies. Additionally, the effects of eupatilin on fibrotic markers including alpha-smooth muscle actin, hypoxia-inducible factor 1 alpha, collagen type I alpha 1 chain, and matrix metalloproteinase-2, were evaluated in TGF-β-induced endometrial fibrosis. The expression of these markers was highly upregulated by TGF-β pretreatment and recovered to the levels of control cells in response to eupatilin treatment. Conclusion: Our findings suggest that suppression of TGF-β-induced signaling by eupatilin might be an effective therapeutic strategy for the treatment of endometrial fibrosis.

The Correlation between the Radiological Changes and the Level of Transforming Growth Factor-β1 in Patients with Pulmonary Tuberculosis (폐결핵의 영상학적 진행과 Transforming Growth Factor-β1 농도와의 관련성)

  • Cho, Yongseon;Lee, Yang Deok;Cho, Wook;Na, Dong Jib;Han, Min Soo
    • Tuberculosis and Respiratory Diseases
    • /
    • v.60 no.3
    • /
    • pp.297-303
    • /
    • 2006
  • Background : Pulmonary tuberculosis is frequently accompanied with complications such as bronchiectasis, cavities, fibrosis and a deterioration of the lung function. However, there is little information available on the pathogenesis of these complications in pulmonary tuberculosis. Among the many factors involving in tissue remodeling, transforming growth factor-${\beta}1$ ($TGF-{\beta}1$) is a potent stimulus of the extracellular matrix fomation and a mediator of potential relevance for airway wall remodeling. Therefore, this study examined the relationship between the radiological changes and the $TGF-{\beta}1$ level in patients with pulmonary tuberculosis. Methods : Serum and bronchoalveolar lavage fluid (BALF) were collected from total of 35 patients before treating them for active pulmonary tuberculosis, and the $TGF-{\beta}1$ levels were measured using an enzyme-linked immunosorbent assay (ELISA). The BALF levels were recalculated as the epithelial lining fluid (ELF) levels using the albumin method. pulmonary function test (PFT) and high resolution computed tomography (HRCT) were performed before and after treatment. Results : There was a strong correlation between the serum $TGF-{\beta}1$ level and the presence of cavities (r=0.404, p=0.006), even though the BAL $TGF-{\beta}1$ level showed a weak correlation with complications. In addition, there was no correlation between the $TGF-{\beta}1$ levels before treatment and the changes in the PFT and HRCT during treatment. Conclusion : There is a correlation between the serum $TGF-{\beta}1$ level and cavity formation in pulmonary tuberculosis before treatment. However, further study will be needed to confirm this.

Epimedium koreanum Nakai Water Extract Regulates Hepatic Stellate Cells Activation through Inhibition of Smad Signaling Pathway (음양곽(淫羊藿) 열수 추출물의 Smad 신호 억제를 통한 간성상세포의 활성 조절)

  • Jung, Ji Yun;Min, Byung-Gu;Park, Chung A;Byun, Sung Hui;Cho, Il Je;Kim, Sang Chan
    • Herbal Formula Science
    • /
    • v.26 no.3
    • /
    • pp.183-193
    • /
    • 2018
  • Objectives : In Traditional Korean Medicine, Epimedium koreanum Nakai has diverse pharmacological activities to treat impotence, forgetfulness, cataract and exophthalmos. Present study investigated anti-fibrogenic effects of E. koreanum water extract (EKE) in hepatic stellate cells (HSCs). Methods : To study anti-fibrogenic effects of EKE, LX-2 cells, a human immortalized HSCs, were pre-treated with $3-300{\mu}g/mL$ of EKE, and then subsequently exposed to 5 ng/mL of transforming growth $factor-{\beta}1$ ($TGF-{\beta}1$). Expression level of ${\alpha}-smooth$ muscle actin was determined by immunoblot analysis. Phosphorylation of Smad, transactivation of Smad, and expression of plasminogen activator inhibitor-1 (PAI-1) were monitored to investigate the effect of EKE on $TGF-{\beta}1-mediated$ signaling pathway. Results : Up to $100{\mu}g/mL$, EKE did not show any cytotoxicity on LX-2 cells. Pre-treatment of EKE ($100{\mu}g/mL$) significantly inhibited ${\alpha}-smooth$ muscle actin expression induced by $TGF-{\beta}1$. In addition, EKE significantly decreased Smad2 and Smad3 phosphorylations, Smad binding element-driven luciferase activity and PAI-1 expression by $TGF-{\beta}1$. Of three flavonoid compounds found in EKE, only quercertin ($30{\mu}M$) attenuated $TGF-{\beta}1-mediated$ PAI-1 expression. Conclusion : These results suggest that EKE has an ability to suppress fibrogenic process in HSCs via inhibition of $TGF-{\beta}1/Smad$ signaling pathway.