The Correlation between the Radiological Changes and the Level of Transforming Growth Factor-β1 in Patients with Pulmonary Tuberculosis

폐결핵의 영상학적 진행과 Transforming Growth Factor-β1 농도와의 관련성

  • Cho, Yongseon (Departments of Internal Medicine, Eulji University School of Medicine) ;
  • Lee, Yang Deok (Departments of Internal Medicine, Eulji University School of Medicine) ;
  • Cho, Wook (Departments of Internal Medicine, Eulji University School of Medicine) ;
  • Na, Dong Jib (Departments of Internal Medicine, Eulji University School of Medicine) ;
  • Han, Min Soo (Departments of Internal Medicine, Eulji University School of Medicine)
  • 조용선 (을지대학교 의과대학 내과학교실) ;
  • 이양덕 (을지대학교 의과대학 내과학교실) ;
  • 조욱 (을지대학교 의과대학 내과학교실) ;
  • 나동집 (을지대학교 의과대학 내과학교실) ;
  • 한민수 (을지대학교 의과대학 내과학교실)
  • Received : 2006.02.23
  • Accepted : 2006.03.14
  • Published : 2006.03.30

Abstract

Background : Pulmonary tuberculosis is frequently accompanied with complications such as bronchiectasis, cavities, fibrosis and a deterioration of the lung function. However, there is little information available on the pathogenesis of these complications in pulmonary tuberculosis. Among the many factors involving in tissue remodeling, transforming growth factor-${\beta}1$ ($TGF-{\beta}1$) is a potent stimulus of the extracellular matrix fomation and a mediator of potential relevance for airway wall remodeling. Therefore, this study examined the relationship between the radiological changes and the $TGF-{\beta}1$ level in patients with pulmonary tuberculosis. Methods : Serum and bronchoalveolar lavage fluid (BALF) were collected from total of 35 patients before treating them for active pulmonary tuberculosis, and the $TGF-{\beta}1$ levels were measured using an enzyme-linked immunosorbent assay (ELISA). The BALF levels were recalculated as the epithelial lining fluid (ELF) levels using the albumin method. pulmonary function test (PFT) and high resolution computed tomography (HRCT) were performed before and after treatment. Results : There was a strong correlation between the serum $TGF-{\beta}1$ level and the presence of cavities (r=0.404, p=0.006), even though the BAL $TGF-{\beta}1$ level showed a weak correlation with complications. In addition, there was no correlation between the $TGF-{\beta}1$ levels before treatment and the changes in the PFT and HRCT during treatment. Conclusion : There is a correlation between the serum $TGF-{\beta}1$ level and cavity formation in pulmonary tuberculosis before treatment. However, further study will be needed to confirm this.

연구배경 : 폐결핵의 치료 후에도 폐의 섬유화, 기관지확장증, 공동 등의 구조적 변화와 이로 인한 폐기능의 악화가 발생하는 경우가 있지만, 이러한 폐결핵의 합병증에 대한 발병기전에 대해 거의 알려진 것이 없다. Transforming growth factor-${\beta}1$ ($TGF-{\beta}1$)은 손상 받은 조직의 정상적인 치유과정의 매개체와 세기관지주위 섬유화에 주요한 기여인자로서 작용한다고 알려졌다. 저자들은 폐결핵의 영상학적 진행 및 폐기능의 변화와 $TGF-{\beta}1$ 농도와의 관련성을 알아보고자 하였다. 방 법: 대상 환자 35명 중 남자가 17명, 여자가 18명이었고 연령분포는 22세에서 65세로 중앙값은 46세였다 모든 환자에서 폐결핵 치료 전에 혈청과 기관지폐포 세첵액(bronchoalveolar lavage fluid, BALF)를 폐결핵 치료 이전에 채취하여 $TGF-{\beta}1$을 측정하였으며 폐기능검사와 고해상도 흉부전산화단층촬영(high resolution computed tomography, HRCT)을 치료 전과 후에 시행하여 비교분석하였다. 기관지폐포 세척액의 식염수와의 희석정도를 보정하기 위해 epithelial lining fluid (ELF) 용적을 알부민 교정방법에 구하여 기관지폐포 세척액에서 $TGF-{\beta}1$의 농도를 교정하였다 결 과: 치료 전의 BAL $TGF-{\beta}1$ 농도는 치료 전의 HRCT에 의한 영상학적 점수와는 상관관계를 보이지 않았으며 치료 전의 혈청 $TGF-{\beta}1$ 농도는 공동과 양의 상관관계를 보였다(r=0.46, p<0.01). 6개월간의 치료기간 동안 HRCT에 의한 영상학적 변화및 폐기능의 변화와는 $TGF-{\beta}1$ 농도가 상관관계를 보이지 않았다. 결 론: 폐결핵에서 치료 전 혈청 $TGF-{\beta}1$ 농도는 공동의 진행 정도와 관련이 있었지만 이의 확인을 위해서는 추가적인 연구가 필요하리라 사료된다.

Keywords

References

  1. Murray CJ, Styblo K, Rouillon A. Tuberculosis in developing countries: burden, intervention and cost. Bull Int Union Tuberc Lung Dis 1990;65:6-24
  2. Blobe GC, Schiemann WP, Lodish HF. Role of transforming growth factor beta in human disease. N Engl J Med 2000;342:1350-8 https://doi.org/10.1056/NEJM200005043421807
  3. Massague J. The transforming growth factor-$\beta$ family. Annu Rev Cell Biol 1990;6:597-641 https://doi.org/10.1146/annurev.cb.06.110190.003121
  4. Grainger DJ, Kemp PR, Liu AC, Lawn RM, Metcalfe JC. Activation of transforming growth factor-beta is inhibited in transgenic apolipoprotein(a) mice. Nature 1994;370:460-2 https://doi.org/10.1038/370460a0
  5. Border WA, Noble NA. Transforming growth factor beta in tissue fibrosis. N Engl J Med 1994;331:1286-92 https://doi.org/10.1056/NEJM199411103311907
  6. Roche WR, Beasley R, Williams JH, Holgate ST. Subepithelial fibrosis in the bronchi of asthmatics. Lancet 1989;1:520-4
  7. Ameglio F, Casarini M, Capoluongo E, Mattia P, Puglisi G, Giosue S. Post-treatment changes of six cytokines in active pulmonary tuberculosis: differences between patients with stable or increased fibrosis. Int J Tuberc Lung Dis 2005;9:98-104
  8. Casarini M, Ameglio F, Alemanno L, Zangrilli P, Mattia P, Paone G, et al. Cytokine levels correlate with a radiologic score in active pulmonary tuberculosis. Am J Respir Crit Care Med 1999;159:143-8 https://doi.org/10.1164/ajrccm.159.1.9803066
  9. Kim KU, Lee SJ, Lee JH, Cho WH, Jung KS, Joe JH, et al. The correlation between bronchostenosis and changes in the levels of interferon-$\gamma$ and transforming growth factor-$\beta$ during the treatment in patients with endobronchial tuberculosis. Tuberc Respir Dis 2005;58:18-24 https://doi.org/10.4046/trd.2005.58.1.18
  10. Ryu YJ, Kim YJ, Kwon JM, Na YJ, Jung YJ, Seoh JY, et al. Circulating cytokine levels and changes during the treatment in patients with active tuberculosis in Korea. Tuberc Respir Dis 2003;55:140-53 https://doi.org/10.4046/trd.2003.55.2.140
  11. Jang AS, Park SW, Ahn MH, Park JS, Kim DJ, Lee JH, et al. Impact of circulating TGF-$\beta$ and IL-10 on T cell cytokines in patients with asthma and tuberculosis. J Korean Med Sci 2006;21:30-4 https://doi.org/10.3346/jkms.2006.21.1.30
  12. Rennard SI, Basset G, Lecossier D, O'Donnell KM, Pinkston P, Martin PG, et al. Estimation of volume of epithelial lining fluid recovered by lavage using urea as marker of dilution. J Appl Physiol 1986;60:532-8 https://doi.org/10.1152/jappl.1986.60.2.532
  13. Raviglione MC, Snider DE Jr, Kochi A. Global epidemiology of tuberculosis: morbidity and mortality of a worldwide epidemic. JAMA 1995;273:220-6 https://doi.org/10.1001/jama.273.3.220
  14. Fletcher HA, Owiafe P, Jeffries D, Hill P, Rook GA, Zumla A, et al. Increased expression of mRNA encoding interleukin (IL)-4 and its splice variant IL-4delta2 in cells from contacts of Mycobacterium tuberculosis, in the absence of in vitro stimulation. Immunology 2004;112:669-73 https://doi.org/10.1111/j.1365-2567.2004.01922.x
  15. de la Barrera S, Aleman M, Musella R, Schierloh P, Pasquinelli V, Garcia V, et al. IL-10 down-regulates costimulatory molecules on Mycobacterium tuberculosis- pulsed macrophages and impairs the lytic activity of CD4 and CD8 CTL in tuberculosis patients. Clin Exp Immunol 2004;138:128-38 https://doi.org/10.1111/j.1365-2249.2004.02577.x
  16. Bai X, Wilson SE, Chmura K, Feldman NE, Chan ED. Morphometric analysis of Th(1) and Th(2) cytokine expression in human pulmonary tuberculosis. Tuberculosis 2004;84:375-85 https://doi.org/10.1016/j.tube.2004.05.001
  17. Hirsch CS, Yoneda T, Averill L, Ellner JJ, Toossi Z. Enhancement of intracellular growth of Mycobacterium tuberculosis in human monocytes by transforming growth factor-$\beta$. J Infect Dis 1994;170:1229-37 https://doi.org/10.1093/infdis/170.5.1229
  18. Toossi Z, Gogate P, Shiratsuchi H, Young T, Ellner JJ. Enhanced production of TGF$\beta$ by blood monocytes from patients with active tuberculosis and presence of TGF$\beta$ in tuberculous granulomatous lung lesions. J Immunol 1995;154:465-73
  19. Rich EA. Pulmonary immune response to Mycobacterium tuberculosis and human immunodeficiency virus. Infect Agent Dis 1996;5:108-18
  20. Im JG, Itoh H, Shim YS, Lee JH, Ahn J, Han MC, et al. Pulmonary tuberculosis: CT findings-early active disease and sequential change with antituberculous therapy. Radiology 1993;186:653-60 https://doi.org/10.1148/radiology.186.3.8430169
  21. Murata K, Itoh H, Todo G, Kanaoka M, Noma S, Itoh T, et al. Centrilobular lesions of the lung: demonstration by high-resolution CT and pathologic correlation. Radiology 1986;161:641-5 https://doi.org/10.1148/radiology.161.3.3786710
  22. Tozkoparan E, Deniz O, Ciftci F, Bozkanat E, Bicak M, Mutlu H, et al. The roles of HRCT and clinical parameters in assessing activity of suspected smear negative pulmonary tuberculosis. Arch Med Res 2005;36:166-70 https://doi.org/10.1016/j.arcmed.2004.12.010
  23. Altin R, Savranlar A, Kart L, Mahmutyazicioglu K, Ozdemir H, Akdag B, et al. Presence and HRCT quantification of bronchiectasis in coal workers. Eur J Radiol 2004;52:157-63 https://doi.org/10.1016/j.ejrad.2004.03.017
  24. Wang YH, Lin AS, Lai YF, Chao TY, Liu JW, Ko SF. The high value of high-resolution computed tomography in predicting the activity of pulmonary tuberculosis. Int J Tuberc Lung Dis 2003;7:563-8
  25. Yabuuchi H, Murayama S, Murakami J, Sakai S, Hashiguchi N, Soeda H, et al. Correlation of immunologic status with high-resolution CT and distributions of pulmonary tuberculosis. Acta Radiol 2002;43:44-7 https://doi.org/10.1080/028418502127347637