• Title/Summary/Keyword: Transformer leakage inductance

Search Result 158, Processing Time 0.028 seconds

Transformer Design Methodology to Improve Transfer Efficiency of Balancing Current in Active Cell Balancing Circuit using Multi-Winding Transformer (다중권선 변압기를 이용한 능동형 셀 밸런싱 회로에서 밸런싱 전류 전달 효율을 높이기 위한 변압기 설계 방안)

  • Lee, Sang-Jung;Kim, Myoung-Ho;Baek, Ju-Won;Jung, Jee-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.4
    • /
    • pp.247-255
    • /
    • 2018
  • This paper proposes a transformer design of a direct cell-to-cell active cell balancing circuit with a multi-winding transformer for battery management system (BMS) applications. The coupling coefficient of the multi-winding transformer and the output capacitance of MOSFETs significantly affect the balancing current transfer efficiency of the cell balancing operation. During the operation, the multi-winding transformer stores the energy charged in a specific source cell and subsequently transfers this energy to the target cell. However, the leakage inductance of the multi-winding transformer and the output capacitance of the MOSFET induce an abnormal energy transfer to the non-target cells, thereby degrading the transfer efficiency of the balancing current in each cell balancing operation. The impacts of the balancing current transfer efficiency deterioration are analyzed and a transformer design methodology that considers the coupling coefficient is proposed to enhance the transfer efficiency of the balancing current. The efficiency improvements resulting from the selection of an appropriate coupling coefficient are verified by conducting a simulation and experiment with a 1 W prototype cell balancing circuit.

A New 12-Pulse Diode Rectifier System With Low kVA Components For Clean Power Utility Interface

  • ;Prasad N.Enjeti
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.5
    • /
    • pp.423-432
    • /
    • 1999
  • This paper proposes a 12­pulse diode rectifier system with low kVA components suitable for powering switch mode power supplies or ac/dc converter applications. The proposed 12-pulse system employs a polyphase transformer, a zero sequence blocking transformer (ZSBT) in the dc link, and an interphase transformer. Results produce near equal leakage inductance in series with each diode rectifier bridge ensuring equal current sharing and performance improvements, The utility input currents and the voltage across the ZSBT are analyzed the kVA rating of each component in the proposed system is computed. The 5th , 7th , 17th and 19th harmonics are eliminated in the input line currents resulting in clean input power. The dc link voltage magnitude generated by the proposed rectifier system is nearly identical to a conventional to a conventional 6-pulse system. The proposed system is suitable to retrofit applications as well as in new PWM drive systems. Simulation and experimental results from a 208V , 10kVA system are shown.

  • PDF

Characteristics of Transformer as a function of Coiling method (코일 형태에 따른 변압기의 특성)

  • Kim, Hyun-Sik;Kim, Jong-Ryung;Lee, Hae-Yon;Evgeniy, Ustinov;Oh, Young-Woo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.05b
    • /
    • pp.161-164
    • /
    • 2004
  • 변압기는 권선방법에 따라 많은 특성의 변화를 나타내게 되는데 일반적인 동선의 권선법과 코일형태로 동판을 가공하여 사용하는 평면 권선방법, 그리고 고전류용 변압기에 이용되는 것으로 코어의 권선창 표면을 감싸는 형태의 관형 권선방법의 3가지의 코일 형태 또는 권선방법에 따른 변압기의 특성 변화와 컨버터에 채용되었을 때의 전력효율에 대하여 고찰하였다. 평면 코일을 이용한 변압기는 높은 코일간의 결합도로 인해 가장 낮은 누설인덕턴스와 가장 높은 성능지수 및 결합계수를 나타내었고, 관형코일을 이용한 변압기는 높은 누설특성으로 인해 가장 낮은 성능지수와 결합계수를 나타내었다. 그리고 이들을 DC-DC 컨버터에 채용하여 분석한 결과 평면변압기가 가장 높은 효율을 발휘하였다. 관형변압기는 저전력에서는 높은 누설량으로 인해 효율이 상대적으로 낮지만 출력전력이 증가할수록 상승하는 발열량에 대한 방열효과가 높아 효율의 감소폭이 작아서 고주파 또는 대전류용 변압기 응용이 기대된다.

  • PDF

Integrated Planar Transformer Design of 3 kW LDC for Electric Vehicles (전기자동차용 3kW급 LDC를 위한 통합형 플라나변압기 설계)

  • Ramadhan, Ramadhan;Suk, Chaeyoung;Kim, Sangjin;Choi, Sewan;Yu, Byeongu;Park, Sanghun
    • Proceedings of the KIPE Conference
    • /
    • 2020.08a
    • /
    • pp.157-159
    • /
    • 2020
  • This paper presents an optimal planar transformer design of a 3-kW Low voltage DC-DC Converter (LDC) with 3.68 kW/L power density for electric vehicle (xEV) application. The transformer is optimized based on the trade-off between footprint and loss using the proposed figure-of-merit (FOM) based optimization. In order to achieve ZVS under entire load range, an external leakage inductance is added and implemented using the proposed magnetic integration technique. A comparison between non-integrated and integrated magnetic core using finite element analysis (FEA) is presented. The result shows that the integrated core can reduce the core loss up to 35 % and core boxed volume up to 15 % compared to the non-integrated core. Experimental results are also provided to validate the proposed magnetic integration technique.

  • PDF

Output characteristics of ac excited $CO_2$ laser as a adjusting a phase angle and frequency (위상각와 주파수 제어에 따른 상용주파 AC 여기 방식의 펄스형 $CO_2$ 레이저 전원장치 개발에 관한 연구)

  • Chung, Hyun-Ju;Kim, Do-Wan;Lee, Dong-Hoon;Kim, Joong-Mann;Kim, Mee-Je;Cho, Jung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.2098-2100
    • /
    • 2000
  • We propose pulsed $CO_2$ laser below 30W by the AC(60Hz) switching control of leakage transformer primary which has some advantage of cost and size compared to a typical pulsed power supply. Pulse repetition rate is adjusted from 5Hz to 60Hz to control laser output. In this laser, a low voltage open loop control for high voltage discharge circuit is employed to avoid the HV sampling or switching and high voltage leakage transformer is used to convert rectified low voltage pulse to high voltage one. A ZCS(Zero Cross Switch) circuit and a PIC one-chip microprocessor are used to control gate signal of SCR precisely. The pulse repetition rate is limited by 60Hz due to the frequency of AC line and a high leakage inductance. The maximum laser output was obtained about 23W at pulse repetition rate of 60Hz, total gas mixture of $CO_{2}/N_{2}$/He = 1/9/15, SCR gate trigger angle 90$^{\circ}$, and total pressure of 18Torr.

  • PDF

Commercial frequency AC discharge magnetic stimulation operating characteristics (상용교류방전 자기자극장치의 동작특성)

  • Kim, Whi-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.12
    • /
    • pp.2685-2692
    • /
    • 2009
  • We propose pulsed magnetic stimulation below 30W by the AC(60Hz) switching control of leakage transformer primary which has some advantage of cost and size compared to a typical pulsed power supply. Pulse repetition rate is adjusted from 5Hz to 60Hz to control magnetic stimulation output. In this magnetic stimulation, a low voltage open loop control for high voltage discharge circuit is employed to avoid the HV sampling or switching and high voltage leakage transformer is used to convert rectified low voltage pulse to high voltage one. A ZCS(Zero Cross Switch)circuit and a DSP & FPGA are used to control gate signal of SCR precisely. The pulse repetition rate is limited by 60Hz due to the frequency of AC line and a high leakage inductance. The maximum magnetic stimulation output was obtained about 33W at pulse repetition rate of 60Hz, total 40, 80, 120, $160^{\circ}$, SCR gate trigger angle $90^{\circ}$ and total output.

Design Optimization of High-Voltage Pulse Transformer for High-Power Pulsed Application (고출력 펄스응용을 위한 고전압 펄스변압기 최적설계)

  • Jang, S.D.;Kang, H.S.;Park, S.J.;Han, Y.J.;Cho, M.H.;NamKung, W.
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1297-1300
    • /
    • 2008
  • A conventional linear accelerator system requires a flat-topped pulse with less than ${\pm}$ 0.5% ripple to meet the beam energy spread requirements and to improve pulse efficiency of RF systems. A pulse transformer is one of main determinants on the output pulse voltage shape. The pulse transformer was investigated and analyzed with the pulse response characteristics using a simplified equivalent circuit model. The damping factor ${\sigma}$ must be >0.86 to limit the overshoot to less than 0.5% during the flat-top phase. The low leakage inductance and distributed capacitance are often limiting factors to obtain a fast rise time. These parameters are largely controlled by the physical geometry and winding configuration of the transformer. A rise time can be improved by reducing the number of turns, but it produces larger pulse droop and requires a larger core size. By tradeoffs among these parameters, the high-voltage pulse transformer with a pulse width of 10 ${\mu}s$, a rise time of 0.84 ${\mu}s$, and a pulse droop of 2.9% has been designed and fabricated to drive a klystron which has an output voltage of 284 kV, 30-MW peak and 60-kW average RF output power. This paper describes design optimization of a high-voltage pulse transformer for high-power pulsed applications. The experimental results were analyzed and compared with the design. The design and optimal tuning parameter of the system was identified using the model simulation.

  • PDF

Analysis of a New Parallel Three-Level Zero-Voltage Switching DC Converter

  • Lin, Bor-Ren;Chen, Jeng-Yu
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.128-137
    • /
    • 2015
  • A novel parallel three-level zero voltage switching (ZVS) DC converter is presented for medium voltage applications. The proposed converter includes three sub-circuits connected in parallel with the same power switches to share load current and reduce the current stress of passive components at the output side. Thus, the size of the output chokes is reduced and the switch counts in the proposed converter are less that in the conventional parallel three-level DC/DC converter. Each sub-circuit combines one half-bridge converter and one three-level converter. The transformer secondary windings of these two converters are connected in series in order to reduce the size of output inductor. Due to the three-level circuit topology, the voltage stress of power switches is equal to $V_{in}/2$. Based on the resonant behavior by the output capacitance of power switches and the leakage inductance (or external inductance) at the transition interval, each switch can be turned on under ZVS. Finally, experiments based on a 2 kW prototype are provided to verify the performance of the proposed converter.

The Study on Forward ZVS MRC for Non-contact Charging Energy Transmission (비접촉 충전 에너지 전달을 위한 포워드형 ZVS MRC에 관한 연구)

  • 김영길;김진우;김태웅;원영진;이성백
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.15 no.2
    • /
    • pp.64-72
    • /
    • 2001
  • In this paper, forward Zero Voltage Switching Multi Resonant Converter(ZVS MRC) for non-contact charging energy transmission is reposed. The forward ZVS MRC is effective in adsorbing parasitic element as well as minimizing the switching loss. That can accommodate very high frequency. So forward ZVC MRC is applied to non-contact charging energy transmission. Used converter has saperatable transformer and synchronous rectifiers. Coupling coefficient(k), leakage inductance, coupling inductance and resonant frequency are observed for the air gap. By using the observed value, this circuit is designed and implemented. This proposed circuit is simulated by the PSPICE and experimented. The voltage stress of a main switch and the output power of the converter are measured. This paper show that is compatible for non-contact charging energy transmission.

  • PDF

Analysis and Implementation of a New Three-Level Converter

  • Lin, Bor-Ren;Nian, Yu-Bin
    • Journal of Power Electronics
    • /
    • v.14 no.3
    • /
    • pp.478-487
    • /
    • 2014
  • This study presents a new interleaved three-level zero-voltage switching (ZVS) converter for high-voltage and high-current applications. Two circuit cells are operated with interleaved pulse-width modulation in the proposed converter to reduce the current ripple at the input and output sides, as well as to decrease the current rating of output inductors for high-load-current applications. Each circuit cell includes one half-bridge converter and one three-level converter at the primary side. At the secondary side, the transformer windings of two converters are connected in series to reduce the size of the output inductor or switching current in the output capacitor. Based on the three-level circuit topology, the voltage stress of power switches is clamped at $V_{in}/2$. Thus, MOSFETs with 500 V voltage rating can be used at 800 V input voltage converters. The output capacitance of the power switch and the leakage inductance (or external inductance) are resonant at the transition interval. Therefore, power switches can be turned on under ZVS. Finally, experiments verify the effectiveness of the proposed converter.