• Title/Summary/Keyword: Transformer Oil

Search Result 400, Processing Time 0.075 seconds

Effect of Dispersion Technique on Heat Transfer Properties of Transformer Oil with Nanoparticles (변압기 나노절연유의 열전달특성에 미치는 분산기술의 영향)

  • Song, Hyun-Woo;Choi, Cheol;Oh, Je-Myung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.151-152
    • /
    • 2005
  • Both $Al_2O_3$ and AlN nanopowders with diameters from ${\mu}m$ to mm were bead-milled and surface-modified by stabilizing agent. The size of bead-milled nanoparticles compared with the primary powder was effectively decreased and was dependent on milling time and bead size. The results of dispersion stability analysis indicated that chemical bonding between nanoparticles and surfactant is more effective than chemical adsorption to prepare the stable transformer oils containing nanoparticles. In this study, the thermal conductivity of the transformer oils containing nanoparticles was measured by transient hot-wire and laser flash methods.

  • PDF

Development of the Preventive Diagnostic Expert System of Gas in Oil for Power Transformer (변압기 예방진단을 위한 유중가스 전문가 시스템 구축 연구)

  • Choi, I.H.;Kweon, D.J.;Jung, G.J.;Sun, J.H.;Kim, C.G.;Kim, K.H.
    • Proceedings of the KIEE Conference
    • /
    • 1999.11d
    • /
    • pp.1019-1021
    • /
    • 1999
  • In this paper, we describe the design and appliance of the preventive diagnostic expert system of gas in oil for power transformer. This expert system is developed to use expert system development tool; Element Expert (NEURON DATA Inc.) Analysis is developed by four diagnose methods. In first, the standard of KEPCO is applied. It classifies the state of transformer by four level: Normal, warning, abnormal and danger. And the others are gas pattern methods, IEC code method, and Dornen & Roger Ratio method and applied later. These latter methods analyse the cause of result. Inference engine was designed with Element Expert. In last, we operate the system with sample data and we can obtain the correctly inferred result for the state of transformer.

  • PDF

Measurement of Moisture Contents using Recovery Voltage Method and Karl-Fischer Method (Karl-Fischer법과 회복전압법을 이용한 수분량 검출 비교 특성)

  • Kim, Hyung-Min;Kim, Jae-Hoon;Kim, Ju-Han;Han, Sang-Ok;Lee, Sei-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2005.07e
    • /
    • pp.76-78
    • /
    • 2005
  • Moisture contents measurement is frequently used as one of parameters for degradation diagnosis of transformer insulation. In general Karl-Fisher method is mainly used for moisture contents till now. But this method is inconvenient because of dismounting transformer for sampling oil or paper, and also partial sampling. At latest Recovery Voltage Method(RVM) is noticed for complement of this method. RVM can directly estimate moisture contents of transformer insulations in field without dismounting transformer. In this paper the accelerated aging process of oil-paper samples have been investigated at a temperature up to 140$^{\circ}C$ for 500 hours. The oil-paper insulation samples have been measured at intervals of 100 hours. Next to, we have estimated moisture contents using both Karl-Fisher Titration Method and RVM. And we have compared with Karl-Fisher Titration Method and RVM for estimating moisture contents. At last we have verified reliability of RVM which is new measurement method.

  • PDF

A Study on the Preventive Method of Accident by Streaming Electrification in UHV Transformer (UHV변압기에서 유동대전에 의한 사고 방지에 관한 연구)

  • 박재윤;고희석
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.6 no.5
    • /
    • pp.38-44
    • /
    • 1992
  • In this paper, electrification pipe modeled on the oil path that insulating oil flow in the high power transformer is manufactured in order to prevent the accident cause from streaming electrification generated when insulating off flow at a solid-liquid interface, and the streaming current is measured and analyzed according to the shape of oil path in electrification pipe. From the result of this study, the streaming current increases linearly with increasing of a oil velocity and it increases at lower temperature and decreases at higher temperature than [$46^{\circ}C$]. The smoother the flow of insulating oil is the more the streaming current decreases.

  • PDF

Performance of environment friendly insulating dielectric oil for power transformer (친환경 변압기 절연유의 특성)

  • Han, Dong-Hee;Cho, Han-Goo;Han, Se-Won;Ahn, Myung-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.453-456
    • /
    • 2004
  • This paper surveys the latest findings on vegetable-oil-based dielectric coolants in power systems. In recent years, environmental concerns have been increased on the use of poorly biodegradable mineral oils in distribution and power transformers in regions where spills from leaks and equipment failure could contaminate the surroundings. In addition, there are demands to improve equipment efficiencies in power systems. In this reason, researches were started in the mid 1990s to develop a fully biodegradable dielectric coolants. Vegetable oil was considered the most likely candidate for a fully biodegradable dielectric coolants. Vegetable-oil-based dielectric coolants provide the advantages of high level of biodegradability, renewable natural resource, non-toxic properties, enhanced fire safety, more effective cooling and good dielectric strength for many electrical equipment.

  • PDF

EFFECT OF THE CHANNEL STRUCTURE ON THE COOLING PERFORMANCE OF RADIATOR FOR TRANSFORMER OF NATURAL CONVECTION TYPE (자연대류를 이용한 변압기용 방열기의 채널 구조가 방열성능에 미치는 영향)

  • Kim, D.E.;Kang, S.;Suh, Y.K.
    • Journal of computational fluids engineering
    • /
    • v.19 no.4
    • /
    • pp.86-93
    • /
    • 2014
  • Increased demand of power-transformer's capacity inevitably results in an excessive temperature rise of transformer components, which in turn requires improved radiator design. In this paper, numerical simulation of the cooling performance of an ONAN-type (Oil Natural Air Natural) radiator surrounded by air was performed by using CFX. The natural convection of the air was treated with the full-model. The present parametric study considers variation of important variables that are expected to affect the cooling performance. We changed the pattern and cross-sectional area of flow passages, the fin interval, the flow rate of oil and shape of flow passages. Results show that the area of flow passage, the fin interval, the flow rate of oil and shape of flow passages considerably affect the cooling performance whereas the pattern of flow passages is not so much influential. We also found that for the case of the fin interval smaller than the basic design, the temperature drop decreases while a larger interval gives almost unchanged temperature drop, indicating that the basic design is optimal. Further, as the flow rate of oil increases, the temperature drop slowly decreases as expected. On the other hand, when the shape of flow passages are changed, temperature drop is increased, indicating that the cooling performance is enhanced thereupon.

Chemical Treatment of the PCBs-laden Transformer Insulation Oil (PCBs 함유 변압기 절연유의 화학적처리)

  • Ryoo, Keon-Sang;Choi, Jong-Ha;Choi, Jin-Whan
    • Journal of Environmental Science International
    • /
    • v.20 no.11
    • /
    • pp.1499-1507
    • /
    • 2011
  • Practical disposal of transformer insulation oil laden with PCBs (polychlorinated biphenyls) by a chemical treatment has been studied in field work. The transformer insulation oil containing PCBs was treated by the required amounts of PEG (polyethylene glycol) and KOH, along with different reaction conditions such as temperatures and times. The reaction of PEG with PCBs under basic condition produces arylpolyglycols, the products of nucleophilic aromatic substitution. Removal efficiencies of PCBs in insulation oil before and after chemical treatment were examined. The removal efficiency of PCBs was very low at lower temperatures of 25 and $50^{\circ}C$. Under the reaction condition of PEG 600/KOH/$100^{\circ}C$/2hr, removal efficiency of PCBs was approximately 70%, showing completely removal of PCBs containing 7~9 chlorines on biphenyl frame which appear later than PCB IUPAC Number 183 (2,2',3,4,4',5',6-heptaCB) in retention time of GC/ECD. However, when increasing the reaction temperature and time to $150^{\circ}C$ and 4 hours, removal efficiency of PCBs reached 99.99% without any formation of PCDDS/PCDFs during the process. Such reaction conditions were verified by several official analytical institutions. In studying the reaction of PEG with PCBs, it confirmed that the process of chemical treatment led to less chlorinated PCBs through a stepwise process with the successive elimination of chlorines.

A Study on the Aging Diagnosis of Transformer oil by Spectrometric and Electroanalytical Methods (분광광도법 및 전기분석법을 이용한 절연유의 경년열화 진단에 관한 연구)

  • 김경렬;곽희로;윤영자;남궁미옥;이동준
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.12 no.2
    • /
    • pp.15-20
    • /
    • 1998
  • The furfural, generated by decomposition of insulating paper, the amount of metal in insulating oil, and tano(electrical properties of insulating oil)have been studied for the insulating oil in pole transformer with accelarated thermal aging test. It has been found that tan $\delta$ is affected by adding components of the transformer. The examination of amount of metal, which exhibits catalytic behavior to oxidation of insulating oil, suggested that the amounts of copper increase with degradation time. A comparison between tano and copper amount suggested that the amounts of copper for attention are above 0.2[pp]). Finally, the examination of amount of furfural revealed that the amounts of furfural increase with degradation time. As a consequence, these results could be used for diagnosis of pole transformer.former.

  • PDF

Analysis of Development Trends on Bio-based Environmental Transformers Oils in Power Sector (전력분야의 바이오 기반 친환경 전기 절연유 적용에 관한 개발 동향 분석)

  • Kim, Jae-Kon;Min, YoungJe;Kim, Mock-Yeon;Kwark, ByeongSub;Park, Hyunjoo
    • Tribology and Lubricants
    • /
    • v.38 no.2
    • /
    • pp.41-52
    • /
    • 2022
  • Mineral electrical insulating oil, which is widely used in transformers, exhibits excellent cooling performance and transformer efficiency. However, given that it is composed of petroleum-based components, it is weak in terms of biodegradability. This causes environmental problems in case of leakage and a low flash point, which is a factor that would cause great damage in the event of a fire in a substation. In this context, the use of eco-friendly electric insulating oil composed of bio-based vegetable oil and synthetic ester, which has excellent biodegradability and flame retardancy performance, has recently been expanded to the field of electric power, and various research and development (R&D) studies are in progress. According to different research results, vegetable oil and synthetic ester manufacturing technology, thermal stability, oxidation stability, property change, and quality control, which are characteristics of eco-friendly electrical insulating oils, are major factors affecting the maintenance of insulating oil properties. In addition, power companies have established and operated quality control standards according to the use of eco-friendly electrical insulating oil as they expand the exploitatoin of renewable energy in electricity production. In particular, deterioration and oxidation characteristics were jointly identified in R&D as an important influencing factor according to the content of saturated and unsaturated fatty acids present in vegetable oils and synthetic esters in power transformer applications.

Changes of Properties and Gas Components according to Accelerated Aging Test of Vegetable Transformer Oil (식물성 절연유의 가속열화에 따른 주요 성분 및 물성 변화)

  • Lee, Donmin;Lee, Mieun;Park, Cheonkyu;Ha, Jonghan;Park, Hyunjoo;Jun, Taehyun;Lee, Bonghee
    • Journal of Energy Engineering
    • /
    • v.25 no.3
    • /
    • pp.18-26
    • /
    • 2016
  • Mineral oil is the most widely used for electrical transformer, though some factors should be considered such as their environmentally harmfulness when it spill and low flash point. To cover these disadvantages, vegetable oil has developed because of its high biodegradability and thermal stability. However, it is necessary that many studies should conduct to reveal the detailed impacts of long-term operation as transformer oil. In this paper, we applied the accelerated aging test which simulate the real transformer circumstances using insulation paper, coil, steel at $150^{\circ}C$, which is higher than normal operation, for 2 weeks. To figure out the oxidation characteristics between mineral oil and vegetable oil test major properties and components such as total acid number, dielectric breakdown and dissolved gas components during that period. As a result of these tests, we found that vegetable oil has higher electric insulation ability than mineral oil though poor total acid number by hydrophile property. Vegetable oil also kept its thermal stability under the given circumstances.