• Title/Summary/Keyword: Transformer Model

Search Result 590, Processing Time 0.03 seconds

Virtual Fitting System Using Deep Learning Methodology: HR-VITON Based on Weight Sharing, Mixed Precison & Gradient Accumulation (딥러닝 의류 가상 합성 모델 연구: 가중치 공유 & 학습 최적화 기반 HR-VITON 기법 활용)

  • Lee, Hyun Sang;Oh, Se Hwan;Ha, Sung Ho
    • The Journal of Information Systems
    • /
    • v.31 no.4
    • /
    • pp.145-160
    • /
    • 2022
  • Purpose The purpose of this study is to develop a virtual try-on deep learning model that can efficiently learn front and back clothes images. It is expected that the application of virtual try-on clothing service in the fashion and textile industry field will be vitalization. Design/methodology/approach The data used in this study used 232,355 clothes and product images. The image data input to the model is divided into 5 categories: original clothing image and wearer image, clothing segmentation, wearer's body Densepose heatmap, wearer's clothing-agnosting. We advanced the HR-VITON model in the way of Mixed-Precison, Gradient Accumulation, and sharing model weights. Findings As a result of this study, we demonstrated that the weight-shared MP-GA HR-VITON model can efficiently learn front and back fashion images. As a result, this proposed model quantitatively improves the quality of the generated image compared to the existing technique, and natural fitting is possible in both front and back images. SSIM was 0.8385 and 0.9204 in CP-VTON and the proposed model, LPIPS 0.2133 and 0.0642, FID 74.5421 and 11.8463, and KID 0.064 and 0.006. Using the deep learning model of this study, it is possible to naturally fit one color clothes, but when there are complex pictures and logos as shown in <Figure 6>, an unnatural pattern occurred in the generated image. If it is advanced based on the transformer, this problem may also be improved.

Circuit Model Based Analysis of a Wireless Energy Transfer System via Coupled Magnetic Resonances (결합된 자기공명을 통한 무선에너지 전력 전송 시스템의 회로 해석)

  • Cheon, Sang-Hoon;Kim, Yong-Hae;Lee, Myung-Lae;Kang, Seung-Youl
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.137-144
    • /
    • 2011
  • A Simple equivalent circuit model is developed for a wireless energy transfer system via coupled magnetic resonances and a practical design method is also provided. Node equations for the resonance system are built with the method, expanding on the equations for a transformer, and the optimum distances of coils in the system are derived analytically for optimum coupling coefficients for high transfer efficiency. In order to calculate the frequency characteristics for a lossy system, the equivalent model is established at an electric design automation tool. The model parameters of the actual system are extracted and the modeling results are compared with measurements. Through the developed model, it is seen that the system can transfer power over a mid-range of a few meters and impedance matching is important to achieve high efficiency. This developed model can be used for a design and prediction on the similar systems such as increasing the number of receiving coils and receiving modules, etc.

A Study on the Improvement of Insulation cover for Instrument Transformer Used In Power Receiving System of Construction Sites (건설현장의 수전설비에서 사용되는 계기용변성기 절연커버의 성능개선에 관한 연구)

  • Gil, Hyoung-Jun;Choi, Chung-Seog;Kim, Hyang-Kon;Han, Woon-Ki;Lee, Bok-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.2
    • /
    • pp.55-62
    • /
    • 2005
  • There are many risk factors of electrical shock caused by a minimum of protective devices, loose working environments, deterioration of installations at temporary power installations of construction sites. An insulation cover for instrument transformer(MOF) used in 22.9[kV] class power receiving system hasn't shown good performance in terms of electrical safety because of short clearance between insulation cover and each input and output wire junction part. The insulation cover is easily moved by outside environment as wind or rain because of different size between insulation cover and busing, also can be leaded to breakdown by tracking. Therefore, we have proposed the insulation cover which effectively can prevent from electrical disaster in this paper, and a utility model patent had been registered already. To decrease the electric field concentrated on specific part, we had roundly designed the shape of insulation cover and the clearance between cover and live part was adjusted to be longer than the existing thing. The proposed insulation cover was evaluated by using the electric field solution program.

Active Vision from Image-Text Multimodal System Learning (능동 시각을 이용한 이미지-텍스트 다중 모달 체계 학습)

  • Kim, Jin-Hwa;Zhang, Byoung-Tak
    • Journal of KIISE
    • /
    • v.43 no.7
    • /
    • pp.795-800
    • /
    • 2016
  • In image classification, recent CNNs compete with human performance. However, there are limitations in more general recognition. Herein we deal with indoor images that contain too much information to be directly processed and require information reduction before recognition. To reduce the amount of data processing, typically variational inference or variational Bayesian methods are suggested for object detection. However, these methods suffer from the difficulty of marginalizing over the given space. In this study, we propose an image-text integrated recognition system using active vision based on Spatial Transformer Networks. The system attempts to efficiently sample a partial region of a given image for a given language information. Our experimental results demonstrate a significant improvement over traditional approaches. We also discuss the results of qualitative analysis of sampled images, model characteristics, and its limitations.

End-to-end speech recognition models using limited training data (제한된 학습 데이터를 사용하는 End-to-End 음성 인식 모델)

  • Kim, June-Woo;Jung, Ho-Young
    • Phonetics and Speech Sciences
    • /
    • v.12 no.4
    • /
    • pp.63-71
    • /
    • 2020
  • Speech recognition is one of the areas actively commercialized using deep learning and machine learning techniques. However, the majority of speech recognition systems on the market are developed on data with limited diversity of speakers and tend to perform well on typical adult speakers only. This is because most of the speech recognition models are generally learned using a speech database obtained from adult males and females. This tends to cause problems in recognizing the speech of the elderly, children and people with dialects well. To solve these problems, it may be necessary to retain big database or to collect a data for applying a speaker adaptation. However, this paper proposes that a new end-to-end speech recognition method consists of an acoustic augmented recurrent encoder and a transformer decoder with linguistic prediction. The proposed method can bring about the reliable performance of acoustic and language models in limited data conditions. The proposed method was evaluated to recognize Korean elderly and children speech with limited amount of training data and showed the better performance compared of a conventional method.

Structural health monitoring data anomaly detection by transformer enhanced densely connected neural networks

  • Jun, Li;Wupeng, Chen;Gao, Fan
    • Smart Structures and Systems
    • /
    • v.30 no.6
    • /
    • pp.613-626
    • /
    • 2022
  • Guaranteeing the quality and integrity of structural health monitoring (SHM) data is very important for an effective assessment of structural condition. However, sensory system may malfunction due to sensor fault or harsh operational environment, resulting in multiple types of data anomaly existing in the measured data. Efficiently and automatically identifying anomalies from the vast amounts of measured data is significant for assessing the structural conditions and early warning for structural failure in SHM. The major challenges of current automated data anomaly detection methods are the imbalance of dataset categories. In terms of the feature of actual anomalous data, this paper proposes a data anomaly detection method based on data-level and deep learning technique for SHM of civil engineering structures. The proposed method consists of a data balancing phase to prepare a comprehensive training dataset based on data-level technique, and an anomaly detection phase based on a sophisticatedly designed network. The advanced densely connected convolutional network (DenseNet) and Transformer encoder are embedded in the specific network to facilitate extraction of both detail and global features of response data, and to establish the mapping between the highest level of abstractive features and data anomaly class. Numerical studies on a steel frame model are conducted to evaluate the performance and noise immunity of using the proposed network for data anomaly detection. The applicability of the proposed method for data anomaly classification is validated with the measured data of a practical supertall structure. The proposed method presents a remarkable performance on data anomaly detection, which reaches a 95.7% overall accuracy with practical engineering structural monitoring data, which demonstrates the effectiveness of data balancing and the robust classification capability of the proposed network.

High Power W-band Power Amplifier using GaN/Si-based 60nm process (GaN/Si 기반 60nm 공정을 이용한 고출력 W대역 전력증폭기)

  • Hwang, Ji-Hye;Kim, Ki-Jin;Kim, Wan-Sik;Han, Jae-Sub;Kim, Min-Gi;Kang, Bong-Mo;Kim, Ki-chul;Choi, Jeung-Won;Park, Ju-man
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.4
    • /
    • pp.67-72
    • /
    • 2022
  • This study presents the design of power amplifier (PA) in 60 nm GaN/Si HEMT technology. A customized transistor model enables the designing circuits operating at W-band. The all matching network of the PA was composed of equivalent transformer circuit to reduce matching loss. And then, equivalent transformer is several advantages without any additional inductive devices so that a wideband power characteristic can be achieved. The designed die area is 3900 ㎛ × 2300 ㎛. The designed results at center frequency achieved the small signal gain of 15.9 dB, the saturated output power (Psat) of 29.9 dBm, and the power added efficiency (PAE) of 24.2% at the supply voltage of 12 V.

Artificial intelligence application UX/UI study for language learning of children with articulation disorder (조음장애 아동의 언어학습을 위한 인공지능 애플리케이션 UX/UI 연구)

  • Yang, Eun-mi;Park, Dea-woo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.174-176
    • /
    • 2022
  • In this paper, we present a mobile application for 'personalized customized learning' for children with articulation disorders using an artificial intelligence (AI) algorithm. A dataset (Data Set) to analyze, judge, and predict the learner's articulation situation and degree. In particular, we designed a prototype model by looking at how AI can be improved and advanced compared to existing applications from the UX/UI (GUI) aspect. So far, the focus has been on visual experience, but now it is an important time to process data and provide a UX/UI (GUI) experience to users. The UX/UI (GUI) of the proposed mobile application was to be provided according to the learner's articulation level and situation by using CRNN (Convolution Recurrent Neural Network) of DeepLearning and Auto Encoder GPT-3 (Generative Pretrained Transformer). The use of artificial intelligence algorithms will provide a learning environment with a high degree of perfection to children with articulation disorders, thereby enhancing the learning effect. I hope that you do not have any fear or discomfort in conversation by improving the perfection of articulation with 'personalized and customized learning'.

  • PDF

Corroded and loosened bolt detection of steel bolted joints based on improved you only look once network and line segment detector

  • Youhao Ni;Jianxiao Mao;Hao Wang;Yuguang Fu;Zhuo Xi
    • Smart Structures and Systems
    • /
    • v.32 no.1
    • /
    • pp.23-35
    • /
    • 2023
  • Steel bolted joint is an important part of steel structure, and its damage directly affects the bearing capacity and durability of steel structure. Currently, the existing research mainly focuses on the identification of corroded bolts and corroded bolts respectively, and there are few studies on multiple states. A detection framework of corroded and loosened bolts is proposed in this study, and the innovations can be summarized as follows: (i) Vision Transformer (ViT) is introduced to replace the third and fourth C3 module of you-only-look-once version 5s (YOLOv5s) algorithm, which increases the attention weights of feature channels and the feature extraction capability. (ii) Three states of the steel bolts are considered, including corroded bolt, bolt missing and clean bolt. (iii) Line segment detector (LSD) is introduced for bolt rotation angle calculation, which realizes bolt looseness detection. The improved YOLOv5s model was validated on the dataset, and the mean average precision (mAP) was increased from 0.902 to 0.952. In terms of a lab-scale joint, the performance of the LSD algorithm and the Hough transform was compared from different perspective angles. The error value of bolt loosening angle of the LSD algorithm is controlled within 1.09%, less than 8.91% of the Hough transform. Furthermore, the proposed framework was applied to fullscale joints of a steel bridge in China. Synthetic images of loosened bolts were successfully identified and the multiple states were well detected. Therefore, the proposed framework can be alternative of monitoring steel bolted joints for management department.

Identification of Void Diameters for Cast-Resin Transformers (몰드변압기의 보이드 결함 크기 판별)

  • Jeong, Gi-woo;Kim, Wook-sung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.570-573
    • /
    • 2022
  • This paper presents the identification of void diameters for a cast-resin transformer using an artificial neural network (ANN) model. A PD signal was measured by the Rogowski coil sensor which has the planar and thin structures fabricated on a printed circuit board (PCB), and the PD electrode system was fabricated to simulate a PD defect by a void. In addition, void samples with different diameters were fabricated by injecting air in a cylindrical aluminum frame using a syringe during the epoxy curing process. To identify the diameter of void defects, PD characteristics such as the discharge magnitude, pulse count, and phase angle were extracted and back propagation algorithm (BPA) was designed using virtual instrument (VI) based on the Labview program. From the experimental results, the BPA algorithm proposed in this paper has over 90% accurate rate to identify the diameter of void defects and is expected to use reference data of maintenance and replacement of insulation for cast-resin transformers in the on-site PD measurement.

  • PDF