• Title/Summary/Keyword: Transformer Capacity

Search Result 192, Processing Time 0.03 seconds

Optimized Synthetic Making Test Facilities for Estimating the Making Performance of Circuit Breaker (차단기의 투입성능 평가를 위한 최적 합성투입시험설비)

  • Suh Yoon-Taek;Kim Maeng-Hvun;Song Won-Pyo;Koh Hee-Seog;Park Seung-Jae
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.6
    • /
    • pp.284-292
    • /
    • 2005
  • Because all of the short-circuit testing laboratories have the limitation of test facilities, the synthetic making test methods have been used to estimate the short-circuit making performance of the ultra high-voltage circuit breaker as the alternative to direct test methods. So, KERI(Korea Eelctrotechnology Research institute) has completed the construction of the synthetic making test facilities using the low capacity step-up transformer method which fulfill the requirements specified in newly revised IEC 62271-100 Edition 1.1(2003) and have the testing capability up to 550kV, 63kA full-pole circuit breaker. The test facilities using the low capacity step-up transformer method presented in this paper are made up of the unit equipments such as HCS(High-speed Closing Switch), ITMC(Initial Transient Making Current) circuit and UP TR(low capacity step-up transformer) and have the operating range of 17.6$^{\circ}$ $\~$ 145.1$^{\circ}$ for testing the circuit breaker rated on up to 50kA and 43.1$^{\circ}$ $\~$ 119.6$^{\circ}$ for more than 50kA.

A fault current analysis and parallel FCL scheme on superconducting new power system (초전도(신)전력계통 고장전류 분석 및 병렬한류시스템)

  • Yoon, Jae-Young;Lee, Seung-Ryul;Kim, Jong-Yul
    • Progress in Superconductivity and Cryogenics
    • /
    • v.8 no.1
    • /
    • pp.49-53
    • /
    • 2006
  • This paper specifies the new power supply paradigm converting 154kV voltage level into 22.9kV class with equivalent capacity using superconducting rower facilities and analyze the fault current characteristics with and without HTS-FCL (High Temperature Superconducting-Fault Current Limiter). Superconducting new power system is the power system to which applies the 22.9kV HTS cable in parallel to HTS transformer and HTS-FCL with low-voltage and mass-capacity characteristics replacing 154kV conventional cable and transformer. The fault current of superconducting new power system will increase greatly because of the mass capacity and low impedance of HTS transformer and cable. This means that the HTS-FCL is necessary to reduce the fault current below the breaking current of circuit breaker. This paper analyze the fault current and suggests the parallel HTS-FCL scheme complementing the inherent problem of HTS-FCL, that is recovery after quenching is impossible within shorter than a few seconds.

A Study on the Transient Analysis of 2[MVA] Mold Transformer for Electric Field (2[MVA] 배전용 몰드변압기의 과도전계해석에 관한 연구)

  • Jeon, Mun-Ho;Kim, Chang-Eob
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.12
    • /
    • pp.171-176
    • /
    • 2010
  • This paper presents the electric field for 22.9[kV]/380[V], 2[MVA] mold transformer are analysed using FEM(finite element method). The electric field was calculated for the voltage applied to the transformer. Then, it is analysed that the maximum electric field occurred between high voltage turns. Capacitance is calculated with energy method. Surge impulse test simulation is studied by modeling circuit with capacitance and inductance. This paper obtain the result that is about influence of electric field in distribution mold transformer adopted.

The Study on the Safety Algorithm of Switchboard Considering Overload of Transformer in Distribution System (배전용 변압기의 과부하상태를 고려한 수배전반 안전 알고리즘에 관한 연구)

  • Chu, Cheol-Min;Kim, Jae-Chul;Kang, Bong-Suk;Ryu, Seung-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.286-287
    • /
    • 2006
  • In this paper, an experiment result on overload of distribution transformer was arranged by top oil temperature depending on capacity and time. This result shows the definition on overload of transformer is different by some factors such as ambient temperature and immediate load. In other words, increased temperature in range of regulation(50K) has time to spare even if the condition of transformer is overload. The algorithm presented in this paper is based on the international standard (IEEE std C57.91), and the safety of switchboard is diagnosed by this aspect mentioned on overload of transformer.

  • PDF

A Heuristic Scheduling Algorithm for Transformer Winding Process with Non-identical Parallel Machines (이종병렬기계로 구성된 변압기 권선공정의 생산일정계획)

  • 박창권;장길상;이동현
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.26 no.2
    • /
    • pp.35-41
    • /
    • 2003
  • This paper proposes a heuristic scheduling algorithm to satisfy the customer's due date in the production process under make to order environment. The goal is to achieve the machine scheduling in the transformer winding process, in which consists of parallel machines with different machine performances. The winding is important production process in the transformer manufacturing company. The efficiency of the winding machines is different according to the voltage capacity and the winding type. This paper introduces a heuristic approach in the transformer winding process where the objective function is to minimize the total tardiness of jobs over due dates. The numerical experiment is illustrated to evaluate the performance.

A Study on the Design of Electrolysis Power Using Inverter (인버터를 이용한 전기분해전원 설계에 과한 연구)

  • 이정민;목형수;최규하;최동규
    • Proceedings of the KIPE Conference
    • /
    • 1998.11a
    • /
    • pp.55-59
    • /
    • 1998
  • By this time, Diode Rectifier or SCR has been used to gain DC Voltage for Electrolysis Power. Generally DC Voltage is produced from rectifier shall be transformed before rectifier using step-down transformer to obtain adaptable DC Voltage, rectifier output. In the same way, rectifier using SCR shall obtain output voltage after step-down voltage through transformer and control of the SCR firing angle. Transformer shall be used for this two methods to adjust the voltage. But the size and weight of the transformer are increased in accordance with the increase of capacity, and the hardships are accompanied in workspace or transportation. Besides, only the value of input voltage is possible to be regulated, and the expectation of current control is almost impossible during Electrolysis. This study has conducted Design and Simulation to reduce the size and weight of transformer and to be enable voltage and current control of Electrolysis power through high-speed switching using Inverter, Electronics device.

  • PDF

A Study on the Vibration Signal for Detection of Power Transformer Failure (변압기 사고 검출을 위한 진동신호 연구)

  • Kim, Hyun-Sik;Kang, Chang-Goo;Chung, Chan-Soo;Kim, Jae-Chul
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.493-495
    • /
    • 1995
  • Recently, as power transformer capacity is getting larger, vibration noise of transformer would be large and unexpected failuare of transformer give enormous economic loses, So we aquaire vibration signal, which is maked from transformer windings, core that are airtight out box with in insulation oil, and out box. Also we are fixed rated voltage and changing load current, analyize frequency domain of each vibration signals.

  • PDF

Influence of a Neutral Line on the Quench Behaviors of a Transformer Type SFCL (변압기형 초전도 한류기의 퀜치특성에 대한 중성선의 영향)

  • Cho, Yong-Sun;Choi, Hyo-Sang;Koo, Kyung-Wan
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.2212-2213
    • /
    • 2008
  • In this paper, we studied the method for simultaneous quenching of a transformer type superconducting fault current limiter (SFCL) with two superconducting elements connected in series. Only an element between two elements of the transformer type SFCL was quenched like the case of the resistive type SFCL. By this quenching characteristics, the power burden of the superconducting element was increased. In order to solve this problem, we connected the neutral line between two superconducting elements and the center of secondary coils. The two elements were all quenched in the transformer type SFCL with a neutral line. As a result, the power burden of superconducting elements was decreased, so it was efficient for the increase of power capacity of the transformer type SFCL.

  • PDF

An Investigation on the Fault Currents in 22.9 kV Distribution System Due to the Increased Capacity and Operating Conditions of Power Transformers in 154 kV Substation (154 kV 변전소 주변압기의 용량 및 운전조건이 22.9 kV 배전계통의 고장전류에 미치는 영향)

  • Cho, Seong-Soo;Han, Sang-Ok
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.3
    • /
    • pp.302-310
    • /
    • 2008
  • In order to evaluate the nominal rating of breakers in distribution system due to the increased capacity and operating conditions of power transformers in 154 kV substation, the fault currents in distribution system were calculated by the conventional method and simulations of PSCAD/EMTDC program. Consequently, under the condition of the parallel operation of transformers, the fault currents exceed the nominal current of the breakers in some areas. Without NGR at the secondary neutral of the transformer, the current of single line-to-ground fault was bigger than that of 3-phase fault. Therefore, the results clearly show that the measures to limit the fault currents in distribution system are needed when the increased capacity of power transformers is introduced into 154 kV substation.

Design of the High Density Power Supply with Flat Transformer (Flat Transformer를 적용한 고밀도 전원장치 설계)

  • Baek J.W.;Kim J.H.;Yoo D.W.;Kim J.S.;Ryu M.H.
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.3
    • /
    • pp.248-256
    • /
    • 2005
  • This paper presents the design method of the DC/DC converter using flat transformer which is suitable for midium or large capacity and high density power supply. Flat transformer module is composed and manufactured of multi-transformers in parallel and has a number of parallel single turn secondary windings. Therefore, its leakage inductance is highly decreased and it is more suitable for high frequency operation than conventional one. In this paper, we manufactured and tested 750W AC/DC converter with variable output powers to verify the performance of the flat transformer.