• Title/Summary/Keyword: Transformation optimization

Search Result 213, Processing Time 0.025 seconds

The Study of Opto-electric Properties in EL Device with PMN Dielectric Layer (PMN 계 유전체 적용 EL 소자의 광전특성 연구)

  • Kum, Jeong-Hun;Han, Da-Sol;Ahn, Sung-Il;Lee, Seong-Eui
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.9
    • /
    • pp.776-780
    • /
    • 2009
  • In this study, the opto-electric properties of EL devices with PMN dielectric layer with variation of firing tempereature were investigated. For the PMN dielectric layer process, the paste was prepared by optimization of quantitative mixing of PMN powder, $BaTiO_3$, Glass Frit, $\alpha$-Terpineol and ethyl cellulose. The EL device stack consists of Alumina substrate ($Al_2O_3$), metallic electrode (Au), insulating layer (manufactured PMN paste), phosphor layer (ELPP- 030, ELK) and transparent electrode (ITO), which is well structure as a thick film EL device. The phase transformation properties of PMN dielectric with various firing temperatures of $150^{\circ}C$ to $850^{\circ}C$ was characterized by XRD. Also the opto-electric properties of EL devices with different firing temperature were investigated by LCR meter and spectrometer. We found the best opto-electric property was obtained at the condition of $550^{\circ}C$ firing which is 3432.96 $cd/m^2$ at 1948.3 pF Capacitance, 40 kHz Frequency, 40% Duty, Vth+330 V voltage.

Transformation of a Dynamic Load into an Equivalent Static Load and Shape Optimization of the Road Arm in Self-Propelled Howitzer (자주포 로드암 동하중의 상당 정하중으로의 변환 및 형상최적설계)

  • Choe, U-Seok;Gang, Sin-Cheon;Sin, Min-Jae;Park, Gyeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.12
    • /
    • pp.3767-3781
    • /
    • 1996
  • Generally, dynamic loads are applied to real structures. Since the analysis with the dynamic load is extremely difficult, static loads are utilized by proper conversions of the dynamic loads. The dynamic loads are usually converted ot static loads by safety foactors of experiences. However, it may increase weight and decrease reliability. In this study, a method is proposed for the conversion process. An equivalent static load is calculated ot generate a same maximum displacement. The method is verified through numerical tests on a spring-mass systems of one and multi degrees-of freedom. It has been found that the duration time of the loads and the natural frequencies of the structures are critical in the conversion process. A road arem is a self-propelled howizer is selected for the application of the proposed method. The shape of the road arm is optimized under the converted static loads.

Optimal Supersonic Diffuser Design of Integrated Rocket Ramjet Engine (IRR형 Ramjet Intake 초음속 확산부 형상 최적설계)

  • 민병영;이재우;변영환
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.6 no.2
    • /
    • pp.65-74
    • /
    • 2002
  • Optimal supersonic diffuser shape of integrated rocket ramjet engine was derived which maximizes the total pressure recovery. Mass flux is considered as a design constraint and the second oblique shock angle of the external ramp, the cowl-lip angle and the throat area are selected as design variables. Refined response surface method through design space transformation technique was developed and employed, and high confidence level of the regression model could be obtained. Genetic algorithm was implemented for both system optimizer and subspace regression model optimization. Virtual nozzle was located at the end of throat to adjust the back pressure. With only 20 aerodynamic analyses, optimal supersonic diffuser shape which has 14% improved total pressure recovery characteristics was successfully designed.

Evaluation of homogenized thermal conductivities of imperfect carbon-carbon textile composites using the Mori-Tanaka method

  • Vorel, Jan;Sejnoha, Michal
    • Structural Engineering and Mechanics
    • /
    • v.33 no.4
    • /
    • pp.429-446
    • /
    • 2009
  • Three-scale homogenization procedure is proposed in this paper to provide estimates of the effective thermal conductivities of porous carbon-carbon textile composites. On each scale - the level of fiber tow (micro-scale), the level of yarns (meso-scale) and the level of laminate (macro-scale) - a two step homogenization procedure based on the Mori-Tanaka averaging scheme is adopted. This involves evaluation of the effective properties first in the absence of pores. In the next step, an ellipsoidal pore is introduced into a new, generally orthotropic, matrix to make provision for the presence of crimp voids and transverse and delamination cracks resulting from the thermal transformation of a polymeric precursor into the carbon matrix. Other sources of imperfections also attributed to the manufacturing processes, including non-uniform texture of the reinforcements, are taken into consideration through the histograms of inclination angles measured along the fiber tow path together with a particular shape of the equivalent ellipsoidal inclusion proposed already in Sko ek (1998). The analysis shows that a reasonable agreement of the numerical predictions with experimental measurements can be achieved.

A Sensing System of the Halbach Array Permanent Magnet Spherical Motor Based on 3-D Hall Sensor

  • Li, Hongfeng;Liu, Wenjun;Li, Bin
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.352-361
    • /
    • 2018
  • This paper proposes a sensing system of the Halbach array permanent magnet spherical motor(PMSM). The rotor position can be obtained by solving three rotation angles, which revolves around 3 reference axes of the stator. With the development of 3-D hall sensor, the position identification problem of the Halbach array PMSM based on rotor magnetic field is studied in this paper. A nonlinear and serious coupling relationship between the rotation angles and the measured magnetic flux density is established on the basis of the rotation transformation theory and the magnetic field model. In order to get rid of the influence on position detection caused by the harmonics of rotor magnetic field and the stator coil magnetic field, a sensor location combination scheme is proposed. In order to solve the nonlinear equation fast and accurately, a new position solution algorithm which combines the merits of gradient projection and particle swarm optimization(PSO) is presented. Then the rotation angles are obtained and the rotor position is identified. The validity of the sensing system is verified through the simulation.

A Study on Minimization Algorithm for ESOP of Multiple - Valued Function (다치 논리 함수의 ESOP 최소화 알고리즘에 관한 연구)

  • Song, Hong-Bok
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.7
    • /
    • pp.1851-1864
    • /
    • 1997
  • This paper presents an algorithm simplifying the ESOP function by several rules. The algorithm is repeatedly performing operations based on the state of each terms by the product transformation operation of two functions and thus it is simplifying the ESOP function through the reduction of the product terms. Through the minimization of the product terms of the multi-valued input binary multi-output function, an optimization of the input has been done using EXOR PLA with input decoder. The algorithm when applied to four valued arithmetic circuit has been used for a EXOR logic circuit design and the two bits input decoder has been used for a EXOR-PLA design. It has been found from a computer simulation(IBM PC486) that the suggested algorithm can reduce the product terms of the output function remarkably regardless of the number of input variables when the variable AND-EXOR PLA is applied to the poperation circuit.

  • PDF

Production of Compaction from Penicillium sp. Y-8515 (Penicillium sp. Y-8515에 의한 Compactin 생산)

  • 박주웅;이주경;권태종;박용일;강상모
    • Microbiology and Biotechnology Letters
    • /
    • v.28 no.5
    • /
    • pp.291-297
    • /
    • 2000
  • A strain producing high levels of compaction was isolated from soil and identified as Penicillium sp. Y-8515 based on the morphological characteristics and ribosomal RNA sequence analysis. Optimization of several different carbon and nitrogen sources for the effective production of compaction was performed resulting in the medium compositions containing 5%(w/v) glucose, 1.0 % soybean meal, 0.5% yeast extract, 0.5%(NH$_4$)$_2$$SO_4$, 0.25%,$ NaH_2$$PO_4$, 0.25% $CaCO_3$. The fixed con-centration of glucose(5%, w/v) and relatively lower concentrations(less than 2.5%, w/v) of soybean meal stimu-lated the transformation of the growth morphology from filamentous to pellet form. Comparing to that by filamentous form, the production of compactin by pellet form increased up to 1.5 folds. In a fed-batch fermentation, continuous feeding of the mixture of glucose and nitrogen source at the ratio of 10:1 showed 3.5-fold more produc-tion yield of compaction comparing to the batch mode.

  • PDF

Method of Deciding Elastic Modulus of Left and Right Ventricle Reconstructed by Echocardiography Using Finite Element Method and Stress Analysis

  • Han, Geun-Jo;Kim, Sang-Hyun
    • Journal of Biomedical Engineering Research
    • /
    • v.15 no.2
    • /
    • pp.217-224
    • /
    • 1994
  • In order to study the shape and dimensions of heart, a procedure to reconstruct a three dimensional left ventricular geometry from two dimensional echocardiographic images was studied including the coordinate transformation, curve fitting and interpolation utilizing three dimensional position registration arm. Nonlinear material property of the left ventricular myocardium was obtained by finite element method performed on the reconstructed geometry and by optimization techniques which compared the computer predicted 3D deformation with the experimentally determined deformation. Elastic modulus ranged from 3.5g/$cm^2$ at early diastole to l53g/$cm^2$ at around end diastole showing slightly nonlinear relationship between the modulus and the pressure. Afterwards using the obtained nonlinear material propertry the stress distribution related with oxyzen consumption rate was analyzed. The maximum and minimum of ${\sigma}_1$ (max. principal stress) occurred at nodes on the second level intersection points of x-axis with endocardium and with epicardium, respectively. And the tendency of the interventricular septum to be flattened was observed from the compressive ${\sigma}_1$ on the anterior, posterior nodes of left ventricle and from the most significant change of dimension in $D_{RL}$ (septal-lateral dimension of right ventricle).

  • PDF

Optimization of Explosive Compounds (TNT and RDX) Biodegradation by Indigenous Microorganisms Activated by External Carbon Source (외부탄소원으로 활성화된 토착미생물에 의한 화약물질(TNT and RDX) 분해 최적화)

  • Park, Jieun;Bae, Bumhan
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.3
    • /
    • pp.56-65
    • /
    • 2014
  • Contamination of explosive compounds in the soils of military shooting range may pose risks to human and ecosystems. As shooting ranges are located at remote places, active remediation processes with hardwares and equipments are less practical to implement than natural solutions such as bioremediaton. In this study, a series of experiments was conducted to select a suitable carbon source and to optimize dosing rate for the enhanced bioremediation of explosive compounds in surface soils and sediments of shooting ranges with indigenous microorganisms activated by external carbon source. Treatability study using slurry phase reactors showed that the presence of indigenous microbial community capable of explosive compounds degradation in the shooting range soils, and starch was a more effective carbon source than glucose and acetic acid in the removal of TNT. However, at higher starch/soil ratio, i.e., 2.0, the acute toxicity of the liquid phase increased possibly due to transformation products of TNT. RDX degradation by indigenous microorganisms was also stimulated by the addition of starch but the acute toxicity of the liquid phase decreased with the increase of starch/soil ratio. Taken together, the optimum range of starch/soil ratio for the degradation of explosive compounds without significant increase in acute toxicity was found to be 0.2 of starch/soil.

Analysis of grain size controlled rheology material dynamics for prediction of solid particle behavior during compression experiment (레오로지 소재의 압축 실험 시 고상입자 거동 예측을 위한 결정립 동역학 해석)

  • Kim H.I.;Kim W.Y.;Kang C.G.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.649-652
    • /
    • 2005
  • It is reported that semi-solid forming process takes many advantages over the conventional forming process, such as long die lift, good mechanical properties and energy saves. Rheology material has a thixotropic, pseudo-plastic and shear-thinning characteristic. Therefore, general plastic or fluid dynamic analysis is not suitable for the behavior of rheology material. So it is difficult for a numerical simulation of the rheology process to be performed because complicated processes such as the filling to include the state of the free surface and solidification in the phase transformation must be considered. Moreover, it is important to predict the deformation behavior for optimization of net shape forging process with semi-solid materials and to control liquid segregation for mechanical properties of materials. In this study, so, molecular dynamics simulation was performed for the control of liquid segregation in compression experiment as a part of study on analysis of rheology forming process.

  • PDF