• Title/Summary/Keyword: Transfer-learning

Search Result 762, Processing Time 0.026 seconds

Performance Comparison of Base CNN Models in Transfer Learning for Crop Diseases Classification (농작물 질병분류를 위한 전이학습에 사용되는 기초 합성곱신경망 모델간 성능 비교)

  • Yoon, Hyoup-Sang;Jeong, Seok-Bong
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.3
    • /
    • pp.33-38
    • /
    • 2021
  • Recently, transfer learning techniques with a base convolutional neural network (CNN) model have widely gained acceptance in early detection and classification of crop diseases to increase agricultural productivity with reducing disease spread. The transfer learning techniques based classifiers generally achieve over 90% of classification accuracy for crop diseases using dataset of crop leaf images (e.g., PlantVillage dataset), but they have ability to classify only the pre-trained diseases. This paper provides with an evaluation scheme on selecting an effective base CNN model for crop disease transfer learning with regard to the accuracy of trained target crops as well as of untrained target crops. First, we present transfer learning models called CDC (crop disease classification) architecture including widely used base (pre-trained) CNN models. We evaluate each performance of seven base CNN models for four untrained crops. The results of performance evaluation show that the DenseNet201 is one of the best base CNN models.

The Effects of Learning Transfer on Perceived Usefulness and Perceived Ease of Use in Enterprise e-Learning - Focused on Mediating Effects of Self-Efficacy and Work Environment - (지각된 유용성과 사용용이성이 기업 이러닝 교육의 학습전이에 미치는 영향에 관한 연구 -자기효능감과 업무환경의 매개효과를 중심으로-)

  • Park, Dae-Bum;Gu, Ja-Won
    • Management & Information Systems Review
    • /
    • v.37 no.3
    • /
    • pp.1-25
    • /
    • 2018
  • This research performed the empirical test for the effects of learning transfer on perceived usefulness, perceived ease of use, self-efficacy and work environment using 390 employees who have experienced e-learning in domestic and foreign companies. Analyzed the mediating effects of self-efficacy and work environment in addition to direct effect of each factor on learning transfer. The results showed that perceived usefulness and perceived ease-of-use of e-learning learner had a positive(+) effect on self-efficacy and a positive influence on supervisor and peer support and organizational climate. Self-efficacy showed a positive effect on learning transfer, and supervisor support, peer support and organizational climate had a positive influence on learning transfer as well. Perceived usefulness also had a positive effect on learning transfer. However, perceived ease-of-use had no significant effect on learning transfer. As a result of the mediating effect analysis, self-efficacy and work environment were analyzed to have mediating effects between perceived usefulness, perceived ease of use, and learning transfer. The implications of this study are as follows. First, this study designed a new research model that reflects factors influencing the effect of learning transfer on acceptance of e-learning that is common in corporate education. It has derived a research model of perceived usefulness and perceived ease-of-use, which were used as mediating variables for external characteristics factors, as independent variables, using self-efficacy and work environment as mediating variables, which were studied as external factors. Second, most of the studies on technology acceptance model and learning transfer are conducted in a single country. The reliability was enhanced by testing the study models using different samples from 26 countries. Third, perceived usefulness and ease-of-use in existing studies have been considered as key determinants of acceptance intention and learning transfer. This study explored the mediating effects of learner and environmental factors on the accepted information technology and strengthened and supplemented the path of learning transfer of perceived usefulness and ease-of-use. In addition, based on the sample analysis of various countries used in this study, it is expected that future international comparative studies will be possible.

A Study on Area Detection Using Transfer-Learning Technique (Transfer-Learning 기법을 이용한 영역검출 기법에 관한 연구)

  • Shin, Kwang-seong;Shin, Seong-yoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.178-179
    • /
    • 2018
  • Recently, methods of using machine learning in artificial intelligence such as autonomous navigation and speech recognition have been actively studied. Classical image processing methods such as classical boundary detection and pattern recognition have many limitations in order to recognize a specific object or area in a digital image. However, when a machine learning method such as deep-learning is used, Can be obtained. However, basically, a large amount of learning data must be secured for machine learning such as deep-learning. Therefore, it is difficult to apply the machine learning for area classification when the amount of data is very small, such as aerial photographs for environmental analysis. In this study, we apply a transfer-learning technique that can be used when the dataset size of the input image is small and the shape of the input image is not included in the category of the training dataset.

  • PDF

Blended-Transfer Learning for Compressed-Sensing Cardiac CINE MRI

  • Park, Seong Jae;Ahn, Chang-Beom
    • Investigative Magnetic Resonance Imaging
    • /
    • v.25 no.1
    • /
    • pp.10-22
    • /
    • 2021
  • Purpose: To overcome the difficulty in building a large data set with a high-quality in medical imaging, a concept of 'blended-transfer learning' (BTL) using a combination of both source data and target data is proposed for the target task. Materials and Methods: Source and target tasks were defined as training of the source and target networks to reconstruct cardiac CINE images from undersampled data, respectively. In transfer learning (TL), the entire neural network (NN) or some parts of the NN after conducting a source task using an open data set was adopted in the target network as the initial network to improve the learning speed and the performance of the target task. Using BTL, an NN effectively learned the target data while preserving knowledge from the source data to the maximum extent possible. The ratio of the source data to the target data was reduced stepwise from 1 in the initial stage to 0 in the final stage. Results: NN that performed BTL showed an improved performance compared to those that performed TL or standalone learning (SL). Generalization of NN was also better achieved. The learning curve was evaluated using normalized mean square error (NMSE) of reconstructed images for both target data and source data. BTL reduced the learning time by 1.25 to 100 times and provided better image quality. Its NMSE was 3% to 8% lower than with SL. Conclusion: The NN that performed the proposed BTL showed the best performance in terms of learning speed and learning curve. It also showed the highest reconstructed-image quality with the lowest NMSE for the test data set. Thus, BTL is an effective way of learning for NNs in the medical-imaging domain where both quality and quantity of data are always limited.

In the relationship between design competency strengthening education for designers and individual performance, Mediating effect of learning self-efficacy and corporate learning transfer climate (디자이너 대상 디자인 역량강화교육과 개인성과와의 관계에서 학습 자기효능감과 기업 학습전이풍토의 매개효과)

  • Kim, Gun-Woo;Kim, Sun-Ah
    • Journal of Digital Convergence
    • /
    • v.20 no.5
    • /
    • pp.897-908
    • /
    • 2022
  • The purpose of this study is to prove the hypothesis that the learning transfer climate, such as individual learning self-efficacy and corporate innovative knowledge transfer, will play a mediating role in the relationship between design competency strengthening education and individual performance considering the designer's characteristics. This is meaningful in expanding the meaning of design education and training by quantitatively analyzing the learning transfer climate that affects learning self-efficacy and organizational culture according to the characteristics of designers, unlike existing studies that simply investigate the satisfaction of education. Specifically, this study set up seven hypotheses, and as a result, it was found that design capacity building education for designers, learning self-efficacy, and learning transfer climate of companies had a significant effect on individual performance.

Comparison of Image Classification Performance in Convolutional Neural Network according to Transfer Learning (전이학습에 방법에 따른 컨벌루션 신경망의 영상 분류 성능 비교)

  • Park, Sung-Wook;Kim, Do-Yeon
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.12
    • /
    • pp.1387-1395
    • /
    • 2018
  • Core algorithm of deep learning Convolutional Neural Network(CNN) shows better performance than other machine learning algorithms. However, if there is not sufficient data, CNN can not achieve satisfactory performance even if the classifier is excellent. In this situation, it has been proven that the use of transfer learning can have a great effect. In this paper, we apply two transition learning methods(freezing, retraining) to three CNN models(ResNet-50, Inception-V3, DenseNet-121) and compare and analyze how the classification performance of CNN changes according to the methods. As a result of statistical significance test using various evaluation indicators, ResNet-50, Inception-V3, and DenseNet-121 differed by 1.18 times, 1.09 times, and 1.17 times, respectively. Based on this, we concluded that the retraining method may be more effective than the freezing method in case of transition learning in image classification problem.

Development of a transfer learning based detection system for burr image of injection molded products (전이학습 기반 사출 성형품 burr 이미지 검출 시스템 개발)

  • Yang, Dong-Cheol;Kim, Jong-Sun
    • Design & Manufacturing
    • /
    • v.15 no.3
    • /
    • pp.1-6
    • /
    • 2021
  • An artificial neural network model based on a deep learning algorithm is known to be more accurate than humans in image classification, but there is still a limit in the sense that there needs to be a lot of training data that can be called big data. Therefore, various techniques are being studied to build an artificial neural network model with high precision, even with small data. The transfer learning technique is assessed as an excellent alternative. As a result, the purpose of this study is to develop an artificial neural network system that can classify burr images of light guide plate products with 99% accuracy using transfer learning technique. Specifically, for the light guide plate product, 150 images of the normal product and the burr were taken at various angles, heights, positions, etc., respectively. Then, after the preprocessing of images such as thresholding and image augmentation, for a total of 3,300 images were generated. 2,970 images were separated for training, while the remaining 330 images were separated for model accuracy testing. For the transfer learning, a base model was developed using the NASNet-Large model that pre-trained 14 million ImageNet data. According to the final model accuracy test, the 99% accuracy in the image classification for training and test images was confirmed. Consequently, based on the results of this study, it is expected to help develop an integrated AI production management system by training not only the burr but also various defective images.

Crop Leaf Disease Identification Using Deep Transfer Learning

  • Changjian Zhou;Yutong Zhang;Wenzhong Zhao
    • Journal of Information Processing Systems
    • /
    • v.20 no.2
    • /
    • pp.149-158
    • /
    • 2024
  • Traditional manual identification of crop leaf diseases is challenging. Owing to the limitations in manpower and resources, it is challenging to explore crop diseases on a large scale. The emergence of artificial intelligence technologies, particularly the extensive application of deep learning technologies, is expected to overcome these challenges and greatly improve the accuracy and efficiency of crop disease identification. Crop leaf disease identification models have been designed and trained using large-scale training data, enabling them to predict different categories of diseases from unlabeled crop leaves. However, these models, which possess strong feature representation capabilities, require substantial training data, and there is often a shortage of such datasets in practical farming scenarios. To address this issue and improve the feature learning abilities of models, this study proposes a deep transfer learning adaptation strategy. The novel proposed method aims to transfer the weights and parameters from pre-trained models in similar large-scale training datasets, such as ImageNet. ImageNet pre-trained weights are adopted and fine-tuned with the features of crop leaf diseases to improve prediction ability. In this study, we collected 16,060 crop leaf disease images, spanning 12 categories, for training. The experimental results demonstrate that an impressive accuracy of 98% is achieved using the proposed method on the transferred ResNet-50 model, thereby confirming the effectiveness of our transfer learning approach.

A Survey of Transfer and Multitask Learning in Bioinformatics

  • Xu, Qian;Yang, Qiang
    • Journal of Computing Science and Engineering
    • /
    • v.5 no.3
    • /
    • pp.257-268
    • /
    • 2011
  • Machine learning and data mining have found many applications in biological domains, where we look to build predictive models based on labeled training data. However, in practice, high quality labeled data is scarce, and to label new data incurs high costs. Transfer and multitask learning offer an attractive alternative, by allowing useful knowledge to be extracted and transferred from data in auxiliary domains helps counter the lack of data problem in the target domain. In this article, we survey recent advances in transfer and multitask learning for bioinformatics applications. In particular, we survey several key bioinformatics application areas, including sequence classification, gene expression data analysis, biological network reconstruction and biomedical applications.

A Study on the Classification of Surface Defect Based on Deep Convolution Network and Transfer-learning (신경망과 전이학습 기반 표면 결함 분류에 관한 연구)

  • Kim, Sung Joo;Kim, Gyung Bum
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.1
    • /
    • pp.64-69
    • /
    • 2021
  • In this paper, a method for improving the defect classification performance in low contrast, ununiformity and featureless steel plate surfaces has been studied based on deep convolution neural network and transfer-learning neural network. The steel plate surface images have low contrast, ununiformity, and featureless, so that the contrast between defect and defect-free regions are not discriminated. These characteristics make it difficult to extract the feature of the surface defect image. A classifier based on a deep convolution neural network is constructed to extract features automatically for effective classification of images with these characteristics. As results of the experiment, AlexNet-based transfer-learning classifier showed excellent classification performance of 99.43% with less than 160 seconds of training time. The proposed classification system showed excellent classification performance for low contrast, ununiformity, and featureless surface images.