• Title/Summary/Keyword: Transfer function method

Search Result 1,336, Processing Time 0.031 seconds

A Study on Determination of PID Coefficients by Deriving Temperature Stabilization Transfer Function and it's Simulation (온도 안정화 전달함수 도출 및 이의 시뮬레이션에 의한 PID 계수 결정에 관한 연구)

  • Eom, Jinseob
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.6
    • /
    • pp.412-418
    • /
    • 2015
  • In this paper, a new method for obtaining PID coefficients which are essential to a temperature stabilization process has been proposed. This method starts from measuring the open loop transfer function of the module, then the closed loop transfer function embodying PID control can be produced based on this. Finally, the simulations using a few PID coefficients and the performance analysis for those results provide the best PID coefficients which are effective in a fast setting to a target temperature, a less current needed, and less deviation from steady state. The measurement using the derived PID coefficients, $K_p=1.6$,$K_i=0.8$,$K_d=0.3$ showed $T_s=7.4[sec]$, %OS = 16, and stabilization within ${\pm}0.02[^{\circ}C]$ for several hours. In addition to light sources like SOA, the proposed method can be utilized for any device needs temperature stabilization.

Development of a TFM load calculation program based on thermal response factor (열응답계수를 이용한 TFM 부하계산법의 제안)

  • 최우영;고철균;이재헌;류해성
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.5
    • /
    • pp.684-691
    • /
    • 1999
  • A load calculation program based on TFM(Transfer function method) has been proposed in this study. The validity of the current method has been verified by comparing heat gain calculation by TRF(Thermal response factor) with that by CTF(Conduction transfer function) adopted in ASHRAE. In addition, it seems that the CTF coefficients given in ASHRAE tables have somewhat ambiguity The load calculation program developed in the current study has been employed to calculate cooling load from the exterior walls and roof of example 6 in the ASHRAE. The results are found in good agreement.

  • PDF

An Accurate Estimation of a Modal System with Initial Conditions (ICCAS 2004)

  • Seo, In-Yong;Pearson, Allan E.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1694-1700
    • /
    • 2004
  • In this paper, we propose the AWLS/MFT (Adaptive Weighed Least Squares/ Modulation Function Technique) devised by A. E. Pearson et al. for the transfer function estimation of a modal system and investigate the performance of several algorithms, the Gram matrix method, a Luenberger Observer (LO), Least Squares (LS), and Recursive Least Squares (RLS), for the estimation of initial conditions. With the benefit of the Modulation Function Technique (MFT), we can separate the estimation problem into two phases: the transfer function parameters are estimated in the first phase, and the initial conditions are estimated in the second phase. The LO method produces excellent IC estimates in the noise free case, but the other three methods show better performance in the noisy case. Finally, we compared our result with the Prony based method. In the noisy case, the AWLS and one of the three methods - Gram matrix, LS, and RLS- show better performance in the output Signal to Error Ratio (SER) aspect than the Prony based method under the same simulation conditions.

  • PDF

Optimization of Angled Ribs for Heat Transfer Enhancement in Square Channel with Bleed Flow (유출홀이 설치된 정사각유로 내 열전달 향상을 위한 경사진 요철 최적설계)

  • Lee, Hyun;Kim, Kyung-Min;Lee, Dong-Hyun;Cho, Hyung-Hee
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2384-2389
    • /
    • 2007
  • The 2nd order response surface method (RSM) has been carried out to get optimum thermal design for enhanced heat transfer on square channel with bleed holes. The RSM was used as an optimization technique with Reynolds-averaged navier-stokes equation. Turbulence model for heat transfer analysis used RNG k-epsilon model. The wall function used enhanced wall function. Numerical local heat transfer coefficients were similar to the experimental tendency. Two design variables such as attack angle of rib (${\alpha}$), rib pitch-to-rib height ratio (p/e) were chosen. Operation condition considered bleeding ratio per bleed hole ($BR_{hole}$). A response surface were constructed by the design variables and operation condition. As a result, adjusted $R^2$ was more than 0.9. Optimization results of various objective function were similar to heat transfer in channel with and without bleed flow. But friction factor was lower than channel without bleed flow.

  • PDF

Investigation on the Size and Center of Sweet Spot of Golf Club (골프클럽 안정타점영역의 크기와 중심에 관한 연구)

  • 이정윤;마정범;오재응
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.5
    • /
    • pp.992-998
    • /
    • 1992
  • This paper presents a method for dynamic analysis of golf club. In the analysis, the sweet spot of golf club is defined based on the magnitude of torsional vibration, and transfer matrix method is employed for numerical calculations. It is shown that the calculated natural frequencies, mode shapes and transfer function agree well with the experimental results.

Optimization of ground response analysis using wavelet-based transfer function technique

  • Moghaddam, Amir Bazrafshan;Bagheripour, Mohammad H.
    • Geomechanics and Engineering
    • /
    • v.7 no.2
    • /
    • pp.149-164
    • /
    • 2014
  • One of the most advanced classes of techniques for ground response analysis is based on the use of Transfer Functions. They represent the ratio of Fourier spectrum of amplitude motion at the free surface to the corresponding spectrum of the bedrock motion and they are applied in frequency domain usually by FFT method. However, Fourier spectrum only shows the dominant frequency in each time step and is unable to represent all frequency contents in every time step and this drawback leads to inaccurate results. In this research, this process is optimized by decomposing the input motion into different frequency sub-bands using Wavelet Multi-level Decomposition. Each component is then processed with transfer Function relating to the corresponding component frequency. Taking inverse FFT from all components, the ground motion can be recovered by summing up the results. The nonlinear behavior is approximated using an iterative procedure with nonlinear soil properties. The results of this procedure show better accuracy with respect to field observations than does the Conventional method. The proposed method can also be applied to other engineering disciplines with similar procedure.

Numerical Optimization of Heat Transfer Surfaces with Staggered Ribs (엇갈린 리브가 부착된 열전달면의 수치최적설계)

  • Kim, Hong-Min;Kim, Kwang-Yong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.735-740
    • /
    • 2003
  • In this study, a numerical optimization to find the optimal shape of streamwise periodic ribs mounted on both of the principal walls is performed to enhance turbulent heat transfer in a rectangular channel. The optimization is based on Navier-Stokes analysis of flow and heat transfer with $k-{\varepsilon}$ turbulence model and is implemented using response surface method. The width-to-height ratio of a rib, rib height-to-channel height ratio, rib pitch to rib height ratio and distance between opposite ribs to rib height ratio are chosen as design variables. The object function is defined as a function of heat transfer coefficient and friction drag coefficient with weighting factor. Optimum shapes of the rib have been investigated for the range of 0.0 to 0.1 of weighting factor.

  • PDF

Control-to-output Transfer Function of the Open-loop Step-up Converter in CCM Operation

  • Wang, Faqiang;Ma, Xikui
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1562-1568
    • /
    • 2014
  • Based on the average method and the geometrical technique to calculate the average value, the average model of the open-loop step-up converter in CCM operation is established. The DC equilibrium point and corresponding small signal model is derived. The control-to-output transfer function is presented and analyzed. The theoretical analysis and PSIM simulations shows that the control-to-output transfer function includes not only the DC input voltage and the DC duty cycle, but also the two inductors, the two energy-transferring capacitors, the switching frequency and the load. Finally, the hardware circuit is designed, and the circuit experimental results are given to confirm the effectiveness of theoretical derivations and analysis.

A Design of Filler Compensated PID Controller via Transfer Function Synthesis (전달함수 합성법에 의한 필터 보상형 PID 제어기 설계)

  • Kim, Jong-Gun;Kim, Ju-Sik;Kim, Hong-Kyu
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.9
    • /
    • pp.88-93
    • /
    • 2008
  • This paper proposes a frequency transfer function synthesis of a later compensated PID controller for an approximated low order model. The proposed method identifies the parameter vector of PID controller from a linear system that is formed by rearranging a loop frequency transfer function synthesis including the filter compensated PID controller obtained from the given frequency response bounds. And an example for the turbine speed control system of Chungju hydropower plant is given to illustrate the feasibilities of suggested schemes.

Optimum Design of Frame Structures Using Generalized Transfer Stiffness Coefficient Method and Genetic Algorithm (일반화 전달강성계수법과 유전알고리즘을 이용한 골조구조물의 최적설계)

  • Choi, Myung-Soo
    • Journal of Power System Engineering
    • /
    • v.9 no.4
    • /
    • pp.202-208
    • /
    • 2005
  • The genetic algorithm (GA) which is one of the popular optimum algorithm has been used to solve a variety of optimum problems. Because it need not require the gradient of objective function and is easier to find global solution than gradient-based optimum algorithm using the gradient of objective function. However optimum method using the GA and the finite element method (FEM) takes many computational time to solve the optimum structural design problem which has a great number of design variables, constraints, and system with many degrees of freedom. In order to overcome the drawback of the optimum structural design using the GA and the FEM, the author developed a computer program which can optimize frame structures by using the GA and the generalized transfer stiffness coefficient method. In order to confirm the effectiveness of the developed program, it is applied to optimum design of plane frame structures. The computational results by the developed program were compared with those of iterative design.

  • PDF