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1. INTRODUCTION

Some 200 years ago, Prony [1] proposed a basic signal 
analysis method to approximate a signal by a weighted sum of 

n exponentials. In other words, a real signal )(ty  that can be 

approximated by:
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for continuous time t≥ 0, where ,CBi ∈ ,,,2,1 ni L=  are the 

output residues, and Ci ∈λ  are the continuous-time

eigenvalues. The Prony approach uses two separate
least-squares solutions, each of order n, with the first
least-squares solution resulting in the eigenvalues of the signal, 
and the second yielding the weighting terms (or residues) in 
the summation. 

However, direct application of the Prony method is very 
limited. First, the method is known to be exceptionally
sensitive to measurement errors in the data samples [5]. 
Second, the algorithm requires a priori knowledge of the 
model order. If the model is not known and the data are 
contaminated by noise, an overmodelled polynomial may be 
used. The oversized model results in an estimation of
extraneous modes differing with the physical modes. Third, in 
addition to the input signal being restricted to be of a special 
form, the Prony approach has the disadvantage that typically 
not all the available input-output data is used in forming the 
estimates. In signal processing areas, the limitations of the 
Prony method have been recognized and many remedies have 
been suggested [6] [7]. In this paper, we suggest the
AWLS/MFT in [8] for the estimation of a parameterized 
transfer function, which is very tolerant to noise. In the 
AWLS/MFT algorithm, the Modulation Function Technique 
(MFT) devised by Shinbrot [9] converts the differential
equation into an algebraic equation, which makes it eas ier to 
solve the identification. Shinbrot’ s MFT avoids dealing with 

the unknown initial conditions over each time interval ],[ 1+ii tt ,

and avoids differentiating the original data. Moreover, using 
the regression error covariance, which is a function of 
unknown parameters, as a weighting matrix, and the method 
of successive iteration, the AWLS greatly improved
estimation performance [10]. With the beneficiary of the MFT, 
the system identification problem can be separated into two 

phases: transfer function (eigenvalues and transfer-function
residues) is estimated in the first phase, and initial condition 
residues are estimated in the second phase. In addition to the 
AWLS, we propose the Gram matrix method (GRAM) [11], a 
Luenberger Observer (LO) [12], well-known Least Squares 
(LS), and Recursive Least Squares (RLS) for the estimation of 
ICs in the second phase. The main objective of this chapter is 
the investigation of the IC estimation characteristics for the 
several methods. In Section 2, system model and system
matrix transformation are introduced. Section 3 contains a 
description of the several identification methods applied for 
ICs estimation in this work. In Section 4, the IC estimation 
characteristics using LO are investigated with no noise. A
comparison of estimation performance with noisy output data 
is presented in Section 5, prior to the concluding section, 
Section 6.

2. SYSTEM CHARACTERIZATION

In this section, the system form to be identified is described 
and the model transformation is introduced.

2.1  System Model

Fig. 1  System model in parallel form

The system model shown in Fig. 1 drawn from [4], is a 
single-input single-output system with Laplace transform
represented in standard parallel form:
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In Fig. 1, the initial condition terms are included explicitly in 

the summation preceding the output )(ty , so that the input 

)(tu  can be taken as 0 for t < 0. The 
iλ ’s are the eigenvalues 

of the system, 
0R  is a feed through gain, 

1R  through 
n

R

are the system residues and 1A  through 
nA  are the initial 
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condition residues. The iλ s are assumed to be distinct and 

can occur in complex conjugate pairs. Residues corresponding 
to complex conjugate eigenvalues also occur in complex
conjugate pairs. The objective of the identification procedure 
is to find estimates of 

i
λ ’s,

i
R ’s,

i
A ’ s, and n so that the 

model’ s output )(ˆ ty  is as close as possible, in SER sense, to 

the actual system output )(ty .

2.2 System Input

For comparison, we will use the same system input and 
system as in [4], which was identified by the Prony method. 

Input )(tu  is piecewise continuous and characterized by sets 

of input eigenvalues between points of discontinuity, and for 

0≥t  is assumed to be of the general form: 
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which is discontinuous at a finite number of 1+q  points in 

time; the su  terms denote unit step functions. The kth input

time interval is characterized by ),[ 1 kk DDt −∈ , where 0
0
=D

without loss of generality. A total of 1+q  time intervals exist 

for 0≥t , where the ( 1+q )th time interval corresponds to 

q
Dt ≥   in which 0)( =tu . During a given time interval, the 

input signal is characterized by as many as m eigenvalues js ,

mj ,,2,,1 L= . The js s are called the input eigenvalues. All 

values of the input signal parameters are assumed known.

The Laplace transform )(sU  for the input signal )(tu  of 

equation (3) is:
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The transform )(sY  of the system output in Fig. 1 is

)()()()( sUsGsGsY i += (5)

where )(sG
i

 accounts for initial conditions and is represented 

by:
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2.3 System Transformation

Since we need to transform the modal form into a 
controller canonical form or an observer canonical form to 
estimate transfer functions and initial conditions using
AWLS/MFT and other algorithms, we briefly introduce the 
system transformation. 
   Assuming distinct poles in the denominator polynomial, 
and using the well-known Gilbert’ s diagonal realization

scheme [13], a state space realization of )(sG  is
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)()()( tuBtxAtx mm +=& (8)

)()()( tuDtxCty mm += , with initial condition 
m

Xx
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Without using similarity transformations, we can directly
transform the modal form to a controller canonical form in the 
case of a SISO system [14]. Let the system transfer function 

be
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The system matrices in controller canonical form { }cccc DCBA ,,,

for the above nth order proper transfer function are given by:
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[ ]nnc aRbaRbaRbC 0202101 ,,, −−−= L , 0RDc =
The system matrices in observer canonical form { }oooo DCBA ,,,

for the above system are related to (10) by
T

co AA = , T

co CB = , T

co BC = co DD = (11)

We can apply the same transformation rule to initial response 
as above. Let the expansion of Laplace transform of zero input 

response )(sYi  be 
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Moreover,
i

A  can be obtained by partial-fraction expansion 

theorem in reverse, [ ]
isiii sYsA λλ =−= )()( . Note that if 

i
λ  is 

complex, the constant 
iA  is also complex.

The state space representation in controller canonical form for 

the zero input response, { }cicici CBA ,, ,  is

)()()( tBtxAtx ciicii δ+=& , 0)0( =iX (14)

)()( txCty icii =
where

cci AA = ,
cci BB = , [ ]nci cccC ,,, 21 L= (15)

and where )(tδ  is the Dirac delta function. 

The initial condition response )(sYi
 is related to the solution 

of (14) by

cccicicicii BAsICBAsICsY 11 )()()( −− −=−= (16)

Similarly, using system matrices in observer canonical form 

{ }oioioi CBA ,, , )(sYi
 can be expressed as

o iooo io io ii BAsICBAsICsY 11 )()()( −− −=−= (17)

because
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By equating the initial condition response in the s domain, we 
get

cccmmm XAsICXAsIC ,0
1
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1 )()( −− −=− (19)
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From either of the above two equations, the IC in controller 

canonical form,
cX ,0

, can be computed. Similarly, the

transformed IC in observer canonical form
oX ,0

 can be

computed from the following relations: 
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Substituting (18) into (20), 

oX ,0
 is obtained by

[ ]Tnoio cccBX ,,, 21,0 L== (21)

where super script T denotes a vector transpose. The objective 
of identification is to estimate system parameters in (9) and 
initial conditions in (21). The process of solving for the 
unknowns involves two main steps:

(1) Initially the model order is assumed to be known a 

priori or it can be determined [16]. Using the AWLS

[8] with )(ty  and )(tu , the transfer function

1695



parameters in equation (9), {
ia ’s, 0R ,

i
b ’ s}, are 

obtained.
(2)  Utilizing the transfer function parameters estimated 

in the first step, reconstruct a zero state response, 

)(ty
u

, and subtract it from the noisy )(ty  to obtain 

a noisy zero input response, )(ty
i

. With the noisy 

)(tyi
 and noisy output )(ty , the initial condition 

residues in equation (12), the ic ’ s, can be estimated 

by several methods which are described in the next 
section.

3. ESTIMATION OF INITIAL CONDITIONS

This section provides a brief review of several parameter
estimation methods that were applied for the estimation of 
initial conditions in this study.

3.1 Estimation of initial conditions using Gram Matrix

We introduce the Gram matrix method and apply it to the 
estimation of initial conditions [11]. The zero input response 

)(tyi
 is,

0)()( XCetyty At

u =− (22)

where )(tyu
 denotes the zero state response. Next, we

“Square up” the equation and integrate over [
it , Tti ∆+ ] in 

order to encompass the known functions.
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The above equation can be expressed in simple notation as 
follows:
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This is the Gram matrix for the n vectors

[ ])(,),(),( 21 ttt nξξξ L , and the n functions comprising AtCe

are linearly dependent if and only if ( ) 0det =iM  where 
i

M

is an nn×  real symmetric matrix [14]. This means that 
knowing [ ])(),( tytu  for Tttt
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The initial conditions can be estimated by least-squares:
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3.2 Estimation of ICs using Least-Squares

We introduce the least squares method and apply it to the 
estimation of initial conditions [15]. Provided that the transfer 

function is accurately estimated by the AWLS, let )(tyu  be a 

reconstructed zero state response with estimated transfer
function parameters. Then the zero input response data can be 
extracted as follows:

0)()( XCetyty At
u =−

By taking the integral of both sides, we get
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Now define a regression model as
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The regression model is
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error vector is 

0Xφε −Ζ= (31)

The least squares estimate of θ  is defined as the vector θ̂
that minimizes the loss function εεθ TV

2

1
)( = . Thus, the initial 

conditions can be estimated by

( ) Ζ= − TTX φφφ 1

0
ˆ (32)

where φ  is an nN ×  regressor matrix, and Z is an )1( ×N

regressand vector. The maximum T∆  is nT /  in order to 

have at least as many regressors as unknown initial conditions. 

3.3 Estimation of ICs using Recursive Least-Squares

We introduce the recursive identification method to
estimate the initial conditions recursively in time [15]. From a 
regression model in equation (29), the initial conditions at 

time it  can be estimated by

( )
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Using the estimated initial conditions at time 1−it ,
iX ,0

ˆ  can 

be updated as follows:
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Here the term )(iε  is interpreted as a prediction error. The 

algorithm needs initial values 
0,0

X̂  and )0(P :

10,0
ˆ

×Θ= nX ,
nn

IP ×= ρ)0( (36)

where ρ  is a large number.

3.4 Estimation of ICs using Luenberger Observer

This algorithm is suggested in [12] by Professor A. E. 
Pearson.
Define the initial response

o

tA

o XeCtz o

,0)( = , Tt <<0 (37)

where ),( oo CA  is any observable state space realization for a 
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given system and
oX ,0

 is an initial condition of  the

observable state space.
Define the reversed I.C. response:
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Hence, we can estimate )(txR
 given )(tzR

 via a

Luenberger observer as follows:
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where L is a column vector for a SISO system.

Fig. 2  Block diagram of Luenberger Observer 

Let )(ˆ)()(~ txtxtx RR −=  to carry out error analysis, then
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If )( oo LCA +−  is Hurwitzian with 0)0(~)(~ )( ≈= +−
xetx

TLCA oo ,

then 0)(ˆ)( ≈− TxTx RR
 i.e., 

oR XTx ,0)(ˆ ≈ . We design the gain 

matrix such that 0
)( ≈+− TLCA ooe  and use )(ˆ Tx

R
 as an estimate

of
oX ,0

.

4. THE STUDY OF IC ESTIMATION USING LO

In this section, the characteristics of IC estimations for
LO method are described using one example model and 
assuming that the system transfer function parameters are 
estimated without any error. No noise is added to the output 
for the simulation in this section.

4.1 Example Model

Let us consider a 4th order system, which is adapted from 
an article by D. A. Pierre et al.  [4]. The actual parameters 
with notations in Fig. 1 are as follows:

0.63.01 j+−=λ , 0.63.02 j−−=λ , 03 =λ , 0.14 −=λ ;

2.03.01 jA += , 2.03.02 jA −= , 2.03 =A , 7.04 =A ; (41)

111 jR −= , 112 jR += , 2.13 =R , and 4.04 =R ;

The input signal is
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which is displayed in Fig. 3. The eigenvalues of the input 

signal over the first time interval 20 <≤ t  are π6.01 js =
and π6.02 js −= ; over the second time interval 42 <≤ t  , 

π23 js =  and π24 js −= ; and over the third time interval 

64 ≤≤ t , no input eigenvalues apply. The system transfer 

function and initial response can be obtained by expanding 
equations (2) and (6):
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)(sG  denotes the system transfer function and )(sGi
 denotes 

the input/output relation of the initial response with the unit 
impulse function. The actual initial condition in observer 

canonical form is T

,0
7.218]30.381,0.88,-[1.5,=

o
X , and the

transformed initial condition in controller canonical form is 
T

,0
.04450]0.04739;-00.00572,-[0.04322,=

c
X .

Fig. 3  Input and output for the example model

4.2 ICs Estimation via Luenberger Observer
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with characteristic equation
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By equating (46) and (48)
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The design procedure of gain column vector L is as follows:
1. Choose the desired pole locations or a pole

displacement d to move all poles to the left in the 
complex plane.

2. Transform the diagonal matrix 
mA  into an observer 

form ∗
o

A  or write a transfer function with the

desired poles to obtain the desired parameters of the 

denominator ∗∗∗
n

aaa ,,,
21
L

3. Compute the gain vector L using equation (49),

where naaa ,,, 21 L  are estimated in the first phase 

or are the given denominator parameters of the
transfer function.

Observer

)()( txAtx RoR −=&

)()( txCtz RoR =

)(ˆ tx
R

)(tz
R

)(tu
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Using the gain vector L and the state equation (39), )(ˆ tx
R

 can 

be obtained by the MATLAB function: 

)),(,,,),(()(ˆ
1 ttzILLCALSIMtx RnnnooR ×× Θ+−=

One IC estimation example using LO is shown in Fig. 4,

where the trace of the estimated )(ˆ txR  and the estimated 

initial condition 
o

X
,0

ˆ  (the values of )(ˆ txR  at t = 6.0 sec

designated with * in 10(a)) are illustrated. In this simulation, 
noise was not added to the initial response which is sampled at 
100 Hz, and all system poles are moved to the left by 5, i.e., 

5=d . Thus the desired pole locations are 0.63.5
1

j+−=∗λ ,

0.63.5
2

j−−=∗λ , 0.5
3

−=∗λ , and 0.64 −=∗λ . The pole 

displacement d is defined as

)(Re iid λλ −= ∗ (50)

where
∗

iλ  is the desired pole location and iλ  is the pole of 

a given system.
In this example, the computed gain vector L is L= [23.2, -174,

1059.08, -1922.7] T , and the estimated ICs using the
Luenberger observer is =

o
X

,0
[1.49984, -0.87939, 30.38200, 

7.21798]’ which produces a model output SER of 86.8 dB. As 

one can see, the gain 4l  in the column vector L is bigger than 

any other components. In Fig. 4(a), only in the 4th component 

of
R

x̂ , ]4[ˆ
R

x  reaches a steady state after a 1.5 sec transient 

state but the other states oscillate until they converge to the 
ICs at time T. As d increases, the transient time of the

estimated state )(ˆ tx R
 becomes smaller but its peak values 

get larger. 

 (a) Trace of state vector )(ˆ txR
 (b) Output SER vs. pole 

displacement

Fig. 4  Estimation of ICs using LO

Fig. 4(b) shows the model output SER, which was computed 

with the true transfer function and the initial condition 
oX ,0

ˆ

estimated by LO for each discrete displacement d from 1 to 
200. For the design of the Luenberger observer, all poles were 
moved to the left by a discrete displacement d, and noise free 

true )(tz  was used for this experiment. The estimated output 

SER increases as d gets larger up to d = 2 or 3, and keeps the 

same maximum value to some value of pole movement 
maxd ,

decreasing after that point. Note that too large a pole
displacement causes a big IC estimation error even though it 

satisfies the criterion, 0
)( ≈+− TLCA

ooe . Fig. 4(b) also shows the 
sampling frequency effects on the estimation of ICs using the 

LO method. Note that both the model output SER and 
maxd

are proportional to the sampling frequency. The optimum pole 
displacement d depends on the sampling frequency, but the d

should not be too large.

5. SIMULATION RESULTS

In this simulation example, the parameters and initial 
conditions of a 4th order system are identified under noisy
condition: the same noise as in [4], a normally distributed, 
zero mean white noise with standard deviation of 0.02, which 
corresponds to 1.15% NSR of output )(ty  and to 4.6% NSR 

of )(ty
i

, was added to the sampled output prior to

identification for comparison. The input and output data were 
sampled at the same sampling frequency of 50 Hz as in [4]. 
The actual system parameters are shown in equation (41) in 
the previous section. The input and noise-free output signals 

are shown in Fig.  3. The output data )(ty  is a combination 

of the simulated output using LSIM() of MATLAB and the 
white Gaussian noise sequence generated by RANDN(), i.e.,

)(),,,,,,()( 0, tvXtuDCBALSIMty mmmmm += where

]0),1,1,1,1(,),,,(),,,,([],,,[ 43214321 ′= RRRRdiagDCBA mmmm λλλλ ,

],,,[
43210,

AAAAX
m

= , and )1,301(*)( RANDNktv =  is the

additive noise with the scale factor k determining the noise 
level. If this command does not work with complex
parameters in the latest version of MATLAB, use the
equations (43) and (44) for generating the output data with 
real parameters:

)()),,,,((),,()( tvtDCBASSIMPULSEtuGLSIMty iiii ++=
where

)]0,09.36,69.36,6.1,1[],218.7,381.30,88.0,5.1[(2],,,[ −= SSTFDCBA iiii

 and )]0,09.36,69.36,6.1,1[],308.43,064.71,76.16,6.3[(2SSTFG= .

We assumed that the system order, the degree of the system 
transfer function n, is a priori known or is estimated by the 
technique in [16]. The M user-chosen frequency index is 
chosen to be 5 which produces the best output SER, so that the 
highest frequency used in the last regressor,

0)( ωnM + , is 1.5Hz.

Note that most of the input energy content is in the frequency 

range 5.10 ≤≤ f  Hz, 4.90 ≤≤ω  rad/s. The pole

displacement d for the LO method is set to 10, ρ  for the 

RLS is set to 1010 , and T∆  for the LS, GRAM, and RLS

are all set to the sample interval sT . Since IC estimates for 

LO method are obtained only in observer form, all initial 
conditions for four IC estimation methods are estimated in the
observer form for easy comparison. The Signal-to-Error ratio 
(SER) is defined as

)(
)(ˆ)(

)(
log20

2

2 dB
tyty

ty
SER

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
=

(51)

which characterizes the estimation performance. Remember 
that the AWLS was used for the estimation of the transfer 
function in common, and four methods were used for IC
estimation.

Table 1 and 2 show the estimated transfer function 
parameters and the initial conditions in the noisy output data 
case. 100 Monte Carlo runs were conducted to mitigate data 
ambiguity. The estimated ICs by the LS, Gram matrix, and 
RLS methods are the same as shown in Table 2. Thus, only 
one model output graph for these three methods is shown in 
Fig. 5.

For each method, the estimate ]1[ˆ
,0 oX  has the smallest error 

while the estimate ]4[ˆ
,0 oX  has the largest error among the four 

initial conditions. The errors of the estimates ]1[ˆ
,0 oX  and 

]3[ˆ
,0 oX  for the LO method are smaller than those for the LS, 

RLS, and GRAM methods but the errors of the estimates
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]2[ˆ
,0 oX  and ]4[ˆ

,0 o
X  for the LO method are much larger than 

those for the other three methods. In the transfer function 
identification stage, the identified s  plane mean eigenvalues 

are [-0.0043, -0.9815, -0.2992 ± j6.0007]. All the system
eigenvalues including the one at s = 0 are accurately
identified.

Estimated Parameters of Transfer Function (100 Monte 

Carlo runs, Fs=50Hz, 02.0=σ )

True '
i

a s
1a

1.6
2a

36.69
3a

36.09
4a

0.0

'ˆ
i

a s Mean
     STD

1.5841
0.1060

36.6919
0.0628

35.5868
3.7616

0.1514
.4658

True 'ib s
1

b

3.6
2

b

16.76
3b

71.064
4

b

43.308

'ˆ
ib s  Mean
    STD

3.5889
0.0295

16.6721
0.4215

70.6921
1.9840

42.3373
6.8531

Table 1  Mean and STD of transfer function parameters

Estimated Initial Conditions

(100 Monte Carlo runs, Fs=50Hz, 02.0=σ )

]1[,0 oX

1.5

]2[,0 oX

-0.88

]3[,0 oX

30.381

]4[,0 oX

7.218

1.5029 -0.9750 30.9740 5.3236LO Mean
   STD 0.0146 0.2229 1.3795 4.5696

1.4803 -0.8626 29.6968 7.9595LS Mean
   STD 0.0664 0.1143 2.2982 3.1486

Table 2  Mean and STD of Estimated IC 

Fig. 5 shows estimation results by the AWLS and Gram 
matrix methods in the noisy case. The model output SER of 
the zero state response is 37.9 dB for both LO and GRAM 
matrix cases, but SERs of total output, which includes zero 
state response and zero input response, are 28.72 and 47.08 dB 
for the LO and Gram matrix method, respectively. 

Fig. 6 displays the noisy system output along with the 
model output identified by the Prony based method. This
graph is pasted from [4] for the purpose of visual comparison 
with our results because no performance measurement is
available in [4]. They used the same sample period of

sec02.0=sT  to obtain 301 sampled data and noise with

mean zero, standard deviation of 0.02. Assuming the model 
order n is not given, they used 11 eigenvalues in the model (1) 
including three dominant ones at s = -0.0293 and s =
-0.3126 ± 5.999. However, the system eigenvalue at s = -1 was 
not readily identified in the remaining model eigenvalues.

Fig. 5 Model output using AWLS and GRAM matrix

Fig. 6  Model output from Prony method in [4]

The only different condition of this simulation in [4] from ours 
is the model order, everything else is the same. In other words, 
we estimated the model order correctly in [16], but they did 
not specify the model order in the Prony method. Comparing 
our result in Fig. 5 with the one in Fig. 6, which is identified 
by the Prony based method under the same simulation
conditions, our results show better performance in a sense of 
error. In particular, our method is very tolerant to noise owing 
to the benefit of applying the AWLS. In the noise free case, the 
Prony based method identified poles more accurately than the 
AWLS, but in the noisy case, the AWLS and one of the three 
methods, Gram matrix, LS, and RLS, represent better
performance than the Prony based method in the output SER
aspect. There is one more advantage in our algorithm in that if 
we increase the sampling rate we could obtain much better 
results. Even without increasing the sampling rate, we showed 
that the algorithm we suggested performs better than the Prony 
method.

6. CONCLUSION

We proposed to use the AWLS/MFT and other estimation 
methods for the identification of a modal system with nonzero 
initial conditions. With the benefit of the MFT, we can
separate the estimation problem into two phases: the transfer 
function parameters are estimated in the first phase, and the 
initial conditions are estimated in the second phase. In
addition to the AWLS, we propose the Gram matrix,
Luenberger Observer, well-known Least Squares (LS), and 
Recursive Least Squares (RLS) methods for the estimation of 
ICs in the second phase. The LO method produces excellent 
IC estimates in the noise free case [16], but the other three 
methods show better performance in the noisy case. Finally, 
we compared our result with the Prony based method in [4]. In
the noisy case, the AWLS and one of the three methods
- Gram matrix, LS, and RLS- show better performance in the 
output SER aspect than the Prony based method under the 
same simulation conditions.
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