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Abstract: In this paper, we propose the AWLS/MFT (Adaptive Weighed Least Squares/ Modulation Function Technique)
devised by A. E. Pearson et al. for the transfer function estimation of a modal system and investigate the performance of several
algorithms, the Gram matrix method, a Luenberger Observer (LO), Least Squares (LS), and Recursive Least Squares (RLS), for the
estimation of initial conditions. With the benefit of the Modulation Function Technique (MFT), we can separate the estimation
problem into two phases: the transfer function parameters are estimated in the first phase, and the initial conditions are estimated in
the second phase. The LO method produces excellent IC estimates in the noise free case, but the other three methods show better
performance in the noisy case. Finally, we compared our result with the Prony based method. In the noisy case, the AWLS and one
of the three methods - Gram matrix, LS, and RLS- show better performance in the output Signal to Error Ratio (SER) aspect than

the Prony based method under the same simulation conditions.
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1. INTRODUCTION

Some 200 years ago, Prony [1] proposed a basic signal
analysis method to approximate a signal by a weighted sum of
n exponentials. In other words, a real signal y(7) that can be

approximated by:
()=, Be" M
i=l
for continuous time t>0, where p cc, i=1,2,,n, are the

output residues, and jcc are the continuous-time

eigenvalues. The Prony approach uses two separate
least-squares solutions, each of order n, with the first
least-squares solution resulting in the eigenvalues of the signal,
and the second yielding the weighting terms (or residues) in

the summation.

However, direct application of the Prony method is very
limited. First, the method is known to be exceptionally
sensitive to measurement errors in the data samples [5].
Second, the algorithm requires a priori knowledge of the
model order. If the model is not known and the data are
contaminated by noise, an overmodelled polynomial may be
used. The oversized model results in an estimation of
extraneous modes differing with the physical modes. Third, in
addition to the input signal being restricted to be of a special
form, the Prony approach has the disadvantage that typically
not all the available input-output data is used in forming the
estimates. In signal processing areas, the limitations of the
Prony method have been recognized and many remedies have
been suggested [6] [7]. In this paper, we suggest the
AWLS/MFT in [8] for the estimation of a parameterized
transfer function, which is very tolerant to noise. In the
AWLS/MFT algorithm, the Modulation Function Technique
(MFT) devised by Shinbrot [9] converts the differential
equation into an algebraic equation, which makes it easier to
solve the identification. Shinbrot’s MFT avoids dealing with
the unknown initial conditions over each time interval [tt.,]5

and avoids differentiating the original data. Moreover, using
the regression error covariance, which is a function of
unknown parameters, as a weighting matrix, and the method
of successive iteration, the AWLS greatly improved
estimation performance [10]. With the beneficiary of the MFT,
the system identification problem can be separated into two
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phases: transfer function (eigenvalues and transfer-function
residues) is estimated in the first phase, and initial condition
residues are estimated in the second phase. In addition to the
AWLS, we propose the Gram matrix method (GRAM) [11], a
Luenberger Observer (LO) [12], well-known Least Squares
(LS), and Recursive Least Squares (RLS) for the estimation of
ICs in the second phase. The main objective of this chapter is
the investigation of the IC estimation characteristics for the
several methods. In Section 2, system nodel and system
matrix transformation are introduced. Section 3 contains a
description of the several identification methods applied for
ICs estimation in this work. In Section 4, the IC estimation
characteristics using LO are investigated with no noise. A
comparison of estimation performance with noisy output data
is presented in Section 5, prior to the concluding section,
Section 6.

2. SYSTEM CHARACTERIZATION

In this section, the system form to be identified is described
and the model transformation is introduced.

2.1 System Model

U(s) R +ii :’ Y(s)

Fig. 1 System model in parallel form

The system model shown in Fig. 1 drawn from [4], is a
single-input single-output system with Laplace transform
represented in standard parallel form:

n R
G(s)= (RO +sz

In Fig. 1, the initial condition terms are included explicitly in

@

the summation preceding the output y(¢), so that the input
u(r) can be taken as 0 for #< 0. The j ’s are the eigenvalues

of the system, g, is a feed through gain, g, through R,

are the system residues and 4, through 4, are the initial



condition residues. The A, s are assumed to be distinct and

can occur in complex conjugate pairs. Residues corresponding
to complex conjugate eigenvalues also occur in complex
conjugate pairs. The objective of the identification procedure
is to find estimates of 2’s, R’s, 4.’s, and n so that the

model’ s output y(¢) is as close as possible, in SER sense, to
the actual system output (¢).

2.2 System Input

For comparison, we will use the same system input and
system as in [4], which was identified by the Prony method.
Input u(r) is piecewise continuous and characterized by sets
of input eigenvalues between points of discontinuity, and for
t 20 is assumed to be of the general form:
u(t) = i N, e " u = D,)—u(t-D,)]

k=1 j=1

which is discontinuous at a finite number of ¢+1 points in

3)

time; the u_ terms denote unit step functions. The kth input
time interval is characterized by ,c[p,,, p,), Where D =0
without loss of generality. A total of g+1 time intervals exist
for +>0, where the (g+1)th time interval corresponds to
tz D, in which u(/)=0. During a given time interval, the
input signal is characterized by as many as m eigenvalues s,
j=1.2,--,m. The s;s are called the input eigenvalues. All
values of the input signal parameters are assumed known.

The Laplace transform U(s) for the input signal u(7) of
equation (3) is:
m —sD_, —sDy+s (Dy=D;_,)
Uls) = i ch,, e —e “4)
k=l j=1 §=5;
The transform Y(s) of the system output in Fig. 1 is
Y(s)=G, (s)+ Gs)U(s) (5)

where G (s) accounts for initial conditions and is represented
by:

2.3 System Transformation

Since we need to transform the modal form into a
controller canonical form or an observer canonical form to
estimate transfer functions and initial conditions using
AWLS/MFT and other algorithms, we briefly introduce the
system transformation.

Assuming distinct poles n the denominator polynomial,
and using the well-known Gilbert’s diagonal realization
scheme [13], a state space realization of G(s) is

2007, R), 4] csbieall @)
4= 0 A e 0 B, - R, X, = /:42 D,=R,
voal H
x(t) = A, x(t) + B, u(t) (3)

wt) =C,x(t)+ D, u(t) , with initial condition x(0) =X,
Without using similarity transformations, we can directly
transform the modal form to a controller canonical form in the
case of a SISO system [14]. Let the system transfer function
be Rs"+bs"" +--+b _s+b 9
1 .4.+a”7|3+a”

Gls) = —L
s"+as" +
The system matrices in controller canonical form {4 3 ¢ p}
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for the above nth order proper transfer function are given by:

—a;—a, - —a, L (10)
I B
0 10 [OJ

C. :[bl —Ryay, b, -Ryay,++, b, —Rya,|, D.=R,
The system matrices in observer canonical form {4 g c p}
for the above system are related to (10) by
4,=4"> B,=c'> c,=B" D, =D, (amn
We can apply the same transformation rule to initial response
as above. Let the expansion of Laplace transform of zero input
response Y(s) be

¢

Y (s) 2”1 A, es" oS T+ 4, s+, (12)
s)= =
' Ss—A  s"+as"'+--+a,_s+b,
where ¢, =X 4 . =34 T4 .
i=1 - k=1 i=lizk
for n=2 (13)

= b
1~
i=Lizk

e =" 34,

k=1
Moreover, 4. can be obtained by partial-fraction expansion
theorem in reverse, 4 =[(s— A )Y, (s)] e Note that if 2, is

complex, the constant 4, is also complex.
The state space representation in controller canonical form for

the zero input response, {Am B, Cﬂ_}, is
%,(f)= 4,x,()+B,6(1)> X,0)=0 (14)
yi(0)=Cox; (1)
where 4 =4,B,=B.,C, =[c,c,,c.] s)

and where &(¢) is the Dirac delta function.
The initial condition response Y, (s) is related to the solution
of (14) by

Y,(s)=C.(s[—4,)"B,=C,(sI —4)"'B, (16
Similarly, using system matrices in observer canonical form
{Aoi, B, ,Cm_}, Y,(s) can be expressed as

Y(s)=C,(sI = 4,)"'B,,=C,(s] —4,)"'B,, a7
because
A,=4"=4" =4, B,=C,> c,=B=B"=c, (18

By equating the initial condition response in the s domain, we
get
C,(sT —A4,)"' X, =C.(sT —4,)"' X, 19
=C, (sl —A“)’l B,
From either of the above two equations, the IC in controller
canonical form, X, » can be computed. Similarly, the

transformed IC in observer canonical form x, =~ can be
computed from the following relations:
Colsl —4,)" X, =C, (sl — 4,)" X, (20)
=C,(s/-4,)"'B,
Substituting (18) into (20), x,  is obtained by
Xnv,,=B,,,=[c1,cz,~--,cn]r (21

where super script 7' denotes a vector transpose. The objective

of identification is to estimate system parameters in (9) and

initial conditions in (21). The process of solving for the
unknowns involves two main steps:

(1) Initially the model order is assumed to be known a

priorior it can be determined [16]. Using the AWLS

[8] with y(@) and wu(?) , the transfer function



parameters in equation (9), {a,’s, R,, b, s}, are
obtained.

Utilizing the transfer function parameters estimated
in the first step, reconstruct a zero state response,
»,(?) , and subtract it from the noisy y(r) to obtain

2

a noisy zero input response, y (7). With the noisy
y,(¢) and noisy output y(#), the initial condition
residues in equation (12), the c¢,’s, can be estimated

by several methods which are described in the next
section.

3. ESTIMATION OF INITIAL CONDITIONS

This section provides a brief review of several parameter
estimation methods that were applied for the estimation of
initial conditions in this study.

3.1 Estimation of initial conditions using Gram Matrix

We introduce the Gram matrix method and apply it to the
estimation of initial conditions [11]. The zero input response

yi(0) 18,

YO =y, ()=CeX, 22)
where v, () denotes the zero state response. Next, we
“Square up” the equation and integrate over [f,,s, +A7T ] in
order to encompass the known functions.

J:’We'*’c’(y(t) —y, (Ot = J:We'*’ CCedrx,’
i=01L2 N=ls ap_7/ s 1 =i-AT -

The above equation can be expressed in simple notation as
follows:

(23)

¢ =MX, (24)
where , _ e C -y, () s M, =" erC'Cendr
Ce™ is a row vector of functions, say E (), & @), &,0)] for
t, <t <t,+AT. Then each ) can be expressed by the n
vectors:

[Temewa [ emewar

[ ewg,war | (29
|1 e0Ewar '

[Mewawar [ & we aan
This is the Gram matrix for the »n vectors
[51 (0,E,@t), -+, &, (t)], and the » functions comprising Ce™

are linearly dependent if and only if det(Ml_): 0 where M,

is an nxn real symmetric matrix [14]. This means that
knowing [,(s), y(r)] for ¢ <t<t,+AT is sufficient to uniquely

determine y, if det( Jﬂ,meﬂ,’ CCo dt):t 0
1

For an observation time interval 7 with sample time interval
T :%v , equation (24) changes into

ig' :iMiXo’ =2 Ny
= ]

The initial conditions can be estimated by least-squares:

fge] 59

(26)

@7
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3.2 Estimation of ICs using Least-Squares

We introduce the least squares method and apply it to the
estimation of initial conditions [15]. Provided that the transfer
function is accurately estimated by the AWLS, let y, (¢) be a
reconstructed zero state response with estimated transfer
function parameters. Then the zero input response data can be
extracted as follows:

y(t)=y,(t)=Ce" X,
By taking the integral of both sides, we get

[ 60 -yu )= [ ce"arx, (28)
where ;=0,1,2,---,N -1, aT=1,> 1, =i-AT-
Now define a regression model as
Z,=0,X, 29
where - ‘C*Ar(y(t)—y“(t))dt and ”- J:j'WCe”’dr
The regression model is
Z=¢X, (30)
where 7=(7,,7,,,2,) » ¢=(9,.¢,¢,) . The equation
error vector is
e=7Z-9X, €2y

The least squares estimate of 6 is defined as the vector 6

that minimizes the loss function ,, _1 . . Thus, the initial
2

conditions can be estimated by
X, =(070)" 0"z (32
where ¢ is an NXxn regressor matrix, and Z is an (Nx1)

regressand vector. The maximum A7 is T/n in order to
have at least as many regressors as unknown initial conditions.

3.3 Estimation of ICs using Recursive Least-Squares

We introduce the recursive identification method to
estimate the initial conditions recursively in time [15]. From a
regression model in equation (29), the initial conditions at
time ¢, can be estimated by

%,=b"0) 6’2 (33)
Using the estimated initial conditions at time 7., %, can
be updated as follows:
X, =X, +K(e@) (34)
where the following definitions apply:
K@= Pa0)¢
ei)=2,-6,-X,,, G

Pi)=Pi-1)—-¢ -P>i-1)/K()
K@) =Pi-1)¢,/ 1+, PG-1)4,]
Here the term &(7) is interpreted as a prediction error. The

algorithm needs initial values X , and A0):

)h(o.o =0, P0) = pl (36)

where p is a large number.

nn

3.4 Estimation of ICs using Luenberger Observer

This algorithm is suggested in [12] by Professor A. E.
Pearson.
Define the initial response
2(=Ce™X,,, 0<t<T (37
where (4,,c,) is any observable state space realization for a



given system and X, is an initial condition of the
observable state space.
Define the reversed 1.C. response:

2, () =C,e* "X, (38

=Cx,(1)

where xg()=e*™x, ~ satisfies

Xp(O)==A,x,(1) >

xp(0)=e T Xy, 0 and more importantly x, (T) = X,,

Hence, we can estimate X, () given

Luenberger observer as follows:
%,0) = —A (D) + Lz, (1) -C, %, (1)

z,(1) via a

(39
= — (4, +LC)Xp (1) + Lz (1)
where L is a column vector for a SISO system.
u(t) ] z,(1)
Xp(t)=—4,x ()
zp (1) = C,xx (¥)
Observer
X (0)
Fig. 2 Block diagram of Luenberger Observer
Let %(5)=x,(1)-%,(r) to carry out error analysis, then
SORENS NN () (40)
= —Ax, (1) — [FAZ0)+ LCx (1)~ C, %, ()]

—(4, + LC)x(1)

If _4,+1c,) is Hurwitzian with %(5) =™ "7%0) =0,
then y (7)-3,()=0 i€, £,()=x,,- We design the gain
matrix such that ¢*"“7<0 and use x,(7) as an estimate
of x

00"

4. THE STUDY OF IC ESTIMATION USING LO

In this section, the characteristics of IC estimations for
LO method are described using one example model and
assuming that the system transfer function parameters are
estimated without any error. No noise is added to the output
for the simulation in this section.

4.1 Example Model

Let us consider a 4" order system, which is adapted from
an article by D. A. Pierre et al. [4]. The actual parameters
with notations in Fig. 1 are as follows:

A ==03+j60, 4,=-03-j60, A, =0, A, =-1.0;

A4 =03+;02,4,=03-,02,4,=02, 4,=07; (41
R =1-j1, R,=1+/1, R,=12,and R, =04;
The input signal is
sin(0.6m), 0<r<2
u(t)y=1-sin[2w(t-2)], 2<t<4 (42)
0, 4<¢<6

which is displayed in Fig. 3. The eigenvalues of the input
signal over the first time interval 0<7<2 are s = ;0.67

and s, =—;0.67 ; over the second time interval 2<r<4 ,
sy=j2r and s, =—j2m ; and over the third time interval

4<t<6, no input eigenvalues apply. The system transfer
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function and initial response can be obtained by expanding
equations (2) and (6):
3.65° +16.765% +71.064s+43.308
s* +1.65° +36.69s +36.09s
1.55° — 0.88s%+30.381s +7.218
s* +1.65° +36.69s° +36.09s
G(s) denotes the system transfer function and ¢ () denotes

Gs) = (43)

G(s) = (44)

the input/output relation of the initial response with the unit
impulse function. The actual initial condition in observer
canonical form is X, =[1.5, -0.88, 30.381, 7.218]", and the
transformed initial condition in controller canonical ©orm is
X =[0.04322-0.005720.04739;-0044507 .

Aomphite,

s £ o & w B u K

« &

-1

Fig. 3 Input and output for the example model

4.2 ICs Estimation via Luenberger Observer

Define
0=-(4, +LC,)
a- -1 0-0] [¢ =1 0--0 (45)
_|a=6, 0-1--0 g, 0 -1--0
a,~1, 0 0--0] |g, 0 00
where L=[1,1,,---,1 ] and ¢, =a,-1I,, i=12,n
det6! —0) =5"~gs" " +¢,5 " =+ (=)""q, s+ (-D"q,  (46)

Let the desired system matrix 4" in observer canonical

form be
-a 100 47)
4= —azy 0 1--0
[-a, 0 00
with characteristic equation
det(sI— 4, )=s"+a,s"" +--+a, (48)
By equating (46) and (48)
(-D'q, =a
I, =(=D""a, +a, for k=12,--,n (49)

The design procedure of gain column vector L is as follows:

1. Choose the desired pole locations or a pole
displacement d to move all poles to the left in the
complex plane.

Transform the diagonal matrix 4, into an observer

form 4° or write a transfer function with the
desired poles to obtain the desired parameters of the

denominator a’,a,",-,a,

Compute the gain vector L using equation (49),
where a,a,, --,a, are estimated in the first phase

or are the given denominator parameters of the
transfer function.



Using the gain vector L and the state equation (39), %,(s) can
be obtained by the MATLAB function:

Xp)=LSIM(H 4, +LC,),L,1,,,0,,,2,(),1)
One IC estimation example using LO is shown in Fig. 4
where the trace of the estimated X,(¢) and the estimated

XO
designated with * in 10(a)) are illustrated. In this simulation,
noise was not added to the initial response which is sampled at
100 Hz, and all system poles are moved to the left by 5, i.e.,

initial condition (the values of x,(¢) at r = 6.0 sec
0

d =5. Thus the desired pole locations are A" =-5.3+ 6.0,

A, =-53-j60, A =-50, and A, =-6.0. The pole
displacement d is defined as
d=Re(),” - 4,) (50)

where A, is the desired pole location and A, is the pole of
a given system.

In this example, the computed gain vector L is L= [23.2, -174,
1059.08, -1922.7] ", and the estimated ICs using the
Luenberger dserver is X,, = [1.49984, -0.87939, 30.38200,
7.21798])” which produces a model output SER of 86.8 dB. As
one can see, the gain /, in the column vector L is bigger than
any other components. In Fig. 4(a), only in the 4" component
of %,, x,[4] reaches a steady state after a 1.5 sec transient
state but the other states oscillate until they converge to the
ICs at time 7. As d increases, the transient time of the
estimated state y NG becomes smaller but its peak values
get larger.

1A, -0, Fumi iz, SR-400. 4l

B - L]
Folu drepleousent ¢

(a) Trace of state vector 3 (z) (b) Output SER vs. pole
displacement

Fig. 4 Estimation of ICs using LO

Fig. 4(b) shows the model output SER, which was computed
with the true transfer function and the initial condition ¥,

estimated by LO for each discrete displacement d from 1 to
200. For the design of the Luenberger observer, all poles were
moved to the left by a discrete displacement d, and noise free
true z(7) was used for this experiment. The estimated output
SER increases as d gets larger up to d= 2 or 3, and keeps the
same maximum value to some value of pole movement 4 _

decreasing after that point. Note that too large a pole
displacement causes a big IC estimation error even though it

satisfies the criterion, e ““"“7 =0 . Fig. 4(b) also shows the
sampling frequency effects on the estimation of ICs using the
LO method. Note that both the model output SER and 4__
are proportional to the sampling frequency. The optimum pole

displacement d depends on the sampling frequency, but the d
should not be too large.
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5. SIMULATION RESULTS

In this simulation example, the parameters and initial
conditions of a 4" order system are identified under noisy
condition: the same noise as in [4], a normally distributed,
zero mean white noise with standard deviation of 0.02, which
corresponds to 1.15% NSR of output y() and to 4.6% NSR

of y(), was added to the sampled output prior to

identification for comparison. The input and output data were
sampled at the same sampling frequency of 50 Hz as in [4].
The actual system parameters are shown in equation @1) in
the previous section. The input and noise-free output signals
are shown in Fig. 3. The output data y(#) is a combination
of the simulated output using LSIM() of MATLAB and the
white Gaussian noise sequence generated by RANDN(), i.e.,

() =LSIM(4,,B,,C,,D,,ut, X, ,)+wt) Where

[4,.B,,C,, D, ]=[diag X, 2, %, %),(R, Ry, R, RY, (1,1, 1, 1), 0],
X,,=[4.4,,4,,4,] , and v()=k* RANDN(301,1) is the
additive noise with the scale factor k& determining the noise
level. If this command does not work with complex
parameters in the latest version of MATLAB, use the
equations (43) and (44) for generating the output data with
real parameters:

W(t) = LSIM(G, u,t) + IMPULSE( SS(A;,B;,C;,D;), t )+ v(t)
where

[4,B,C,D]=TF2SS([1.5,—0.88303817.218,[11.6,3669,3609,0])

and G=TF255[36,167671.06443308,[1,1.6,366936.09,0]) -
We assumed that the system order, the degree of the system
transfer function #, is a priori known or is estimated by the
technique in [16]. The M user-chosen frequency index is
chosen to be 5 which produces the best output SER, so that the
highest frequency used in the last regressor, (v + 5@, » is 1.5Hz.

m>

Note that most of the input energy content is in the frequency
range 0<f<15 Hz, 0<w<94 rad/s. The pole

displacement d for the LO method is set to 10, p for the

RLS is set to 10'°, and AT for the LS, GRAM, and RLS
are all set to the sample interval 7, . Since IC estimates for

LO method are obtained only in observer form, all initial
conditions for four IC estimation methods are estimated in the
observer form for easy comparison. The Signal-to-Error ratio
(SER) is defined as

](dB)

sk = 2010 L
-0l

which characterizes the estimation performance. Remember

that the AWLS was used for the estimation of the transfer

function in common, and four methods were used for IC

estimation.

Table 1 and 2 show the estimated transfer function
parameters and the initial conditions in the noisy output data
case. 100 Monte Carlo runs were conducted to mitigate data
ambiguity. The estimated ICs by the LS, Gram matrix, and
RLS methods are the same as shown in Table 2 Thus, only
one model output graph for these three methods is shown in
Fig. 5.

For each method, the estimate 4 [ has the smallest error

(1

while the estimate , 4 has the largest error among the four
initial conditions. The errors of the estimates y 17 and
%,.[3) for the LO method are smaller than those for the LS,

RLS, and GRAM methods but the errors of the estimates



X, 127 and X, [4] for the LO method are much larger than

those for the other three methods. In the transfer function
identification stage, the identified S plane mean eigenvalues
are [-0.0043, -0.9815, -0.2992 + j6.0007]. All the system
eigenvalues including the one at s 0 are accurately

identified.
Estimated Parameters of Transfer Function (100 Monte
Carlo runs, Fs=50Hz, o =0.02)
True a's a, a, a, a,
1.6 36.69 36.09 0.0
a,'s Mean 1.5841 | 36.6919 | 35.5868 | 0.1514
STD 0.1060 0.0628 3.7616 4658
True ,'s b, b, b, b,
3.6 16.76 71.064 43.308
h's Mean | 3.5889 [ 16.6721 | 70.6921 | 42.3373
STD 0.0295 0.4215 1.9840 6.8531

Table 1 Mean and STD of transfer function parameters

Estimated Initial Conditions

(100 Monte Carlo runs, Fs=50Hz, o =0.02)
Xo 1 | X 21 | X, I8 | X,,[4]
1.5 -0.88 30.381 7.218
LO Mean 1.5029 -0.9750 | 30.9740 | 5.3236
STD 0.0146 0.2229 1.3795 4.5696
LS Mean 1.4803 -0.8626 [ 29.6968 7.9595
STD 0.0664 0.1143 2.2982 3.1486

Table 2 Mean and STD of Estimated IC

Fig. 5 shows estimation results by the AWLS and Gram
matrix methods in the noisy case. The model output SER of
the zero state response is 37.9 dB for both LO and GRAM
matrix cases, but SERs of total output, which includes zero
state response and zero input response, are 28.72 and 47.08 dB
for the LO and Gram matrix method, respectively.

Fig. 6 displays the noisy system output along with the
model output identified by the Prony based method. This
graph is pasted from [4] for the purpose of visual comparison
with our results because no performance measurement is
available in [4]. They used the same sample period of
T, =0.02sec to obtain 301 sampled data and noise with

mean zero, standard deviation of 0.02. Assuming the model
order 7 is not given, they used 11 eigenvalues in the model (1)
including three dominant ones at s -0.0293 and s
-0.3126 £ 5.999. However, the system eigenvalue ats = -1 was
not readily identified in the remaining model eigenvalues.

Fig. 5 Model output using AWLS and GRAM matrix
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NOISY SYSTEM OUTPUT - solid
MODEL OUTPUT - dot dash

OUTpU TeSponses

—
3

s L
1 2 4 5 &

time (s)

Fig. 6 Model output from Prony method in [4]

The only different condition of this simulation in [4] from ours
is the model order, everything else is the same. In other words,
we estimated the model order correctly in [16], but they did
not specify the model order in the Prony method. Comparing
our result in Fig. 5 with the one in Fig. 6, which is identified
by the Prony based method under the same simulation
conditions, our results show better performance in a sense of
error. In particular, our method is very tolerant to noise owing
to the benefit of applying the AWLS. In the noise free case, the
Prony based method identified poles more accurately than the
AWLS, but in the noisy case, the AWLS and one of the three
methods, Gram matrix, LS, and RLS, represent better
performance than the Prony based method in the output SER
aspect. There is one more advantage in our algorithm in that if
we increase the sampling rate we could obtain much better
results. Even without increasing the sampling rate, we showed
that the algorithm we suggested performs better than the Prony
method.

6. CONCLUSION

We proposed to use the AWLS/MFT and other estimation
methods for the identification of a modal system with nonzero
initial conditions. With the benefit of the MFT, we can
separate the estimation problem into two phases: the transfer
function parameters are estimated in the first phase, and the
initial conditions are estimated in the second phase. In
addition to the AWLS, we propose the Gram matrix,
Luenberger Observer, well-known Least Squares (LS), and
Recursive Least Squares (RLS) methods for the estimation of
ICs in the second phase. The LO method produces excellent
IC estimates in the noise free case [16], but the other three
methods show better performance in the noisy case. Finally,
we compared our result with the Prony based method in [4]. In
the noisy case, the AWLS and one of the three methods
- Gram matrix, LS, and RLS- show better performance in the
output SER aspect than the Prony based method under the
same simulation conditions.
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