• Title/Summary/Keyword: Transfer function method

Search Result 1,336, Processing Time 0.035 seconds

A Frequency Transfer Function Synthesis of QFT Using Total Least Squares Method (완전최소자승법을 이용한 QFT의 주파수 전달함수 합성법)

  • Kim, Ju-Sik;Lee, Sang-Hyuk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.8
    • /
    • pp.649-654
    • /
    • 2002
  • The essential philosophy of the QFT(Quantitative Feedback Theory) is that a suitable controller can be found by loop shaping a nominal loop transfer function such that the frequency response of this function does not violate the QFT bounds. The loop shaping synthesis involves the identification of a structure and its specialization by means of the parameter optimization. This paper presents an optimization algorithm to estimate the controller parameters from the frequency transfer function synthesis using the TLS(Total Least Squares) in the QFT loop shaping procedure. The proposed method identifies the parameter vector of the robust controller from an overdetermined linear system developed from rearranging the two dimensional system matrices and output vectors obtained from the QFT bounds. The feasibility of the suggested algorithm is illustrated with an example.

Effects of Contralateral Seventh Cervical Nerve Transfer on Upper Extremity Motor Function in the Patients with Spastic Hemiplegia after Stroke: a Retrospective Cohort Study

  • Wonjae Choi
    • Physical Therapy Rehabilitation Science
    • /
    • v.11 no.4
    • /
    • pp.502-508
    • /
    • 2022
  • Objective: Contralateral seventh cervical nerve transfer (contralateral C7 transfer) is a newly attempted method to restore upper extremity motor function in the patients with spastic arm paralysis. The aim of this study was to investigate the effects of contralateral C7 transfer on upper extremity motor function in the patients with spastic hemiplegia after stroke. Design: A retrospective cohort study. Methods: Thirty-four patients with spastic hemiplegia after stroke was investigated. All patients registered between January 2020 and February 2021. The subjects were assessed on upper extremity motor function, cognition, and spasticity before and after contralateral C7 transfer. The upper extremity motor function was measured using the Fugl-Meyer upper extremity scale and box & block test. The cognition and spasticity were assessed by Korean version mini mental state examination (K-MMSE) and modified Ashworth scale from baseline to 8 weeks after the surgery. Results: The Fugl-Meyer upper extremity scale and modified Ashworth scale were significantly improved after contralateral C7 transfer (p<0.05). However, box & block test and K-MMSE were no significant changes after the surgery (p>0.05). Conclusions: This study suggested that the contralateral C7 transfer was a feasible and practical approach to improve upper extremity motor function in the patients with spastic hemiplegia after stroke, but further study is required to identify the long-term effects after the contralateral C7 transfer.

Effects of Inlet Turbulence Conditions and Near-wall Treatment Methods on Heat Transfer Prediction over Gas Turbine Vanes

  • Bak, Jeong-Gyu;Cho, Jinsoo;Lee, Seawook;Kang, Young Seok
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.1
    • /
    • pp.8-19
    • /
    • 2016
  • This paper investigates the effects of inlet turbulence conditions and near-wall treatment methods on the heat transfer prediction of gas turbine vanes within the range of engine relevant turbulence conditions. The two near-wall treatment methods, the wall-function and low-Reynolds number method, were combined with the SST and ${\omega}RSM$ turbulence model. Additionally, the RNG $k-{\varepsilon}$, SSG RSM, and $SST_+{\gamma}-Re_{\theta}$ transition model were adopted for the purpose of comparison. All computations were conducted using a commercial CFD code, CFX, considering a three-dimensional, steady, compressible flow. The conjugate heat transfer method was applied to all simulation cases with internally cooled NASA turbine vanes. The CFD results at mid-span were compared with the measured data under different inlet turbulence conditions. In the SST solutions, on the pressure side, both the wall-function and low-Reynolds number method exhibited a reasonable agreement with the measured data. On the suction side, however, both wall-function and low-Reynolds number method failed to predict the variations of heat transfer coefficient and temperature caused by boundary layer flow transition. In the ${\omega}RSM$ results, the wall-function showed reasonable predictions for both the heat transfer coefficient and temperature variations including flow transition onset on suction side, but, low-Reynolds methods did not properly capture the variation of the heat transfer coefficient. The $SST_+{\gamma}-Re_{\theta}$ transition model showed variation of the heat transfer coefficient on the transition regions, but did not capture the proper transition onset location, and was found to be much more sensitive to the inlet turbulence length scale. Overall, the Reynolds stress model and wall function configuration showed the reasonable predictions in presented cases.

Effects of Flame Transfer Function on Modeling Results of Combustion Instabilities in a 3 Step Duct System (3단 덕트 시스템에서 화염전달함수가 연소불안정 모델링 결과에 미치는 영향)

  • Hong, Sumin;Kim, Daesik
    • Journal of ILASS-Korea
    • /
    • v.25 no.3
    • /
    • pp.119-125
    • /
    • 2020
  • In this paper, we used Helmholtz solver based on 3D finite element method to quantitatively analyze the effects of change of gain, time delay and time delay spread, which are the main variables of flame transfer function, on combustion instability in gas turbine combustor. The effects of the variable of flame transfer function on the frequency and growth rate, which are the main results of combustion instability, were analyzed by applying the conventional heat release fluctuation model and modified one considering the time spread. The analysis results showed that the change of gain and time delay in the same resonance mode affected the frequency of the given resonance modes as well as growth rate of the feedback instability, however, the effect of time delay spread was not relatively remarkable, compared with the dominant effect of time delay.

The Fault Diagnosis of a Transformer Using Neural Network and Transfer Function

  • Park, Byung-Koo;Kim, Jong-Wook;Kim, Sang-Woo;Park, Poo-Gyeon;Park, Tae-Joon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.127.2-127
    • /
    • 2001
  • A transformer is one of the most important elements in the power network. Transformer faults could cause costly repairs and be dangerous to personnel. To avoid this, its reliable operation has great significance and, therefore, the diagnosis system of the transformer is necessitated. The dissolved gas-in-oil analysis (DGA) is the worldwide popular method of detecting faults such as a hot spot or partial discharges inside the transformer. DGA, however, is not a reliable technique to identify aging phenomena and mechanical faults including insulation failure, inter-turn short, etc. To overcome the drawbacks of DGA, the transfer function method is used to identify effectively these kinds of the mechanical faults. The transformer has a unique transfer function independent of the shape of the input waveform, which can be evaluated through sweep test. This transfer function changes by winding ...

  • PDF

Transfer Function Estimation Using a modified Wavelet shrinkage (수정된 웨이블렛 축소 기법을 이용한 전달함수의 추정)

  • 김윤영;홍진철;이남용
    • Journal of KSNVE
    • /
    • v.10 no.5
    • /
    • pp.769-774
    • /
    • 2000
  • The purpose of the work is to present successful applications of a modified wavelet shrinkage method for the accurate and fast estimation of a transfer function. Although the experimental process of determining a transfer function introduces not only Gaussian but also non-Gaussian noises, most existing estimation methods are based only on a Gaussian noise model. To overcome this limitation, we propose to employ a modified wavelet shrinkage method in which L1 -based median filtering and L2 -based wavelet shrinkage are applied repeatedly. The underlying theory behind this approach is briefly explained and the superior performance of this modified wavelet shrinkage technique is demonstrated by a numerical example.

  • PDF

Tool Wear Monitoring Scheme by Modeling of the Cutting Dynamics by Time-series Method (Time-series 방법으로 모델링한 절삭역학에 의한 공구마모감시방법)

  • Kwon, Won-Tae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.4
    • /
    • pp.94-103
    • /
    • 1993
  • In this work, the imaginary part of the inner modulation transfer function of the cutting dynamics is introduced for tool wear monitoring. Time-series method is utilized to construct the general three dimensional cutting dynamics whose imaginary part of the inner modulation transfer funcition shows the proportionality to tool wear at the natural frequency of the machine tool dynamics. Thus model is reduced to single-input single-output model without altering the proportionality characteristics to tool wear and implemented to the dual computer system in which one computer performs measurement while the other calculates the imaginary part of the inner modulation transfer function of the cutting dynamics by the batch least square method. The values of the imaginary part at the natural requency of the machine tool structure in the cutting direction are compared to the one calculated during machining with a brand new tool to decide the current status of the tool. The experiments shows the relevance of the proposed concept.

  • PDF

On-line process identification for cascade control system (Cascade 제어를 위한 실시간 공정 식별법)

  • 박흥일;성수환;이인범
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1412-1415
    • /
    • 1996
  • In this paper, a new identification method of the cascade control system is proposed which can overcome the weak points of Krishnaswamy and Rangaiah(1987)'s method. This new method consists of two steps. One is on-line process identification using the numerical integration to approximate the two process dynamics with a high order linear transfer function. The other is a model reduction technique to derive out low order transfer function(FOPTD or SOPTD) from the obtained high order linear transfer function to tune the controller using usual tuning rules. While the proposed method preserves the advantages of the Krishnaswamy and Rangaiah(1987)'s method, it has such a simplicity that it requires only measured input and output data and simple least-squares technique. Simulation results show that the proposed method can be a promising alternative in the identification of cascade control systems.

  • PDF

Development of Transfer Function Separation Method for Experimental Dynamic Modification of Mounted System (마운트계의 실험적 설계변경을 위한 전달함수분리법의 개발)

  • 정의봉;조영희
    • Journal of KSNVE
    • /
    • v.7 no.5
    • /
    • pp.847-852
    • /
    • 1997
  • Many investigations about the dynamic analysis of the structural system based on the BBA(Building Block Approach) method which predict dynamic characteristics of synthesized structures from each structure. But it is actually sometimes difficult to remove mounts from structures. In this paper, TFSM(The Transfer Function Separation Method) is developed which can predict dynamic characteristics of separated structures from the data of vibrational experiment of the synthesized structures. By combining TFSM with BBA, this paper also proposes the method which can predict dynamic characteristics of mount-modified structure without removing mounts from structures. And the proposed method is verified by the experimental data of plates.

  • PDF

Analysis of Optical Transfer Function and Phase Error of the Modified Triangular Interferometer

  • Kim, Soo-Gil;Ryeom, Jeong-Duk
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.1
    • /
    • pp.10-18
    • /
    • 2007
  • We synthesize and analyze the optical transfer function(OTF) of the modified triangular interferometer(MTI) using two-pupil synthesis method and we present the optimal MTI, which can obtain any bipolar function by combining a wave plate and a linear polarizer. Also, we analyze its potential phase error sources caused by polarization components.