• Title/Summary/Keyword: Transfer device

Search Result 1,122, Processing Time 0.024 seconds

Design and Implementation of Wireless Power Transfer System for a Personal Rapid Transit (PRT) Vehicle (PRT 차량의 무선급전 시스템 설계 및 구현)

  • Kang, Seok-Won;Jeong, Rag-Gyo;Byun, Yeun-Sub;Um, Ju-Hwan;Kim, Baek-Hyun
    • Journal of Digital Convergence
    • /
    • v.12 no.11
    • /
    • pp.289-298
    • /
    • 2014
  • Recently, the traditional paradigm in railroad technology is changing as more efficient and cost-effective electric vehicle (EV) technologies have emerged. The original concept of PRT (Personal Rapid Transit) proposed in the past has come to be regarded as unrealistic, but its feasibility is improving through the utilization of an EV platform. In particular, battery-powered vehicles pose difficult technical challenges in attempts to achieve reliable and efficient operation. However, based on the inductive power transfer (IPT) technology, the fast charging of supercapacitors with high energy density can contribute to overcoming this technical challenge and promote the transition to electric-powered ground transportation by improving the appearance of cities. This study discusses the development process of a power supply system for PRT, including concept design, numerical analysis, and device manufacturing, along with performance predictions and evaluations. In terms of results, the system was found to meet the performance requirements for power supply modules on a test-bed.

A Study on the Surface-Radiation Heat Transfer Characteristics in an Open Cavity with a Heat Source (발열체가 존재하는 개방된 정사각형공간에서 표면복사 열전달 특성에 관한 연구)

  • Nam, Pyoung-Woo;Park, Myoung-Sig;Park, Chan-Woo
    • Solar Energy
    • /
    • v.12 no.3
    • /
    • pp.70-83
    • /
    • 1992
  • The interaction between the surface radiation and the mixed convection transport from an isolated thermal source, with a uniform surface heat flux input and located in a rectangular enclosure, is stuied numerically. The enclosure simulates a practical system such an air cooled electric device, where an air-stream flows through the openings on the two vertical walls. The heat source represents an electric component located in such an enclosure. The size of this cavity is $0.1[m]{\times}0.1[m]$. The inlet velocity is assumed as 0.07[m/s] and the inlet temperature is maintained as $27^{\circ}C$. The inflow is kept at a fixed position. Laminar, two dimensional flow is assumed, and the problem lies in the mixed convection regime, governed by buoyancy force and surface readiation. The significant variables include the location of the out-flow opening, of the heat source and the wall emissivity. The basic nature of the resulting interaction betwwn the externally induced air stream and the buoyancy-driven flow generated by the source is investigated. As a result, the best location of the heat source to make the active heat transfer is 0.075[m] from the left wall on the floor. The trends observed are also discussed in terms of heat removal from practical systems such as electric circuitry.

  • PDF

Preparation and Properties of Organic Electroluminescent Devices (유기 전계발광소자의 제작과 특성 연구)

  • 노준서;장호정
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.9 no.1
    • /
    • pp.9-13
    • /
    • 2002
  • Recently, Organic electroluminescent devices (OELDs) have been demonstrated the medium sized full color display with effective multi-layer thin films. In this study, the multi-layer OELDs were prepared on the patterened ITO (indium tin oxide)/glass substrates by the vacuum thermal evaporation method. The low molecule compounds such as $Alq_3$(trim-(8-hydroxyquinoline)aluminum) and CTM (carrier transfer material) as the electron transport and injection layers as well as TPD (triphenyl-diamine) and CuPc (copper phthalocyanine) as the hole transport and injection layers were used. The luminance was rapidly increased above the threshold voltage of 10 V. The luminance and emission spectrum for the OELDs samples with $A1/CTM/Alq_3$/TPD/1TO structures were found to be 430 cd/$m^2$and 512 nm at 17 V showing green color emission. In contrast, the samples with $Li-A1/Alq_3$/TPD/CuPC/1TO multi-structures showed 508 nm in emission spectrum and 650 cd/$m^2$at 17 V in the luminance. The increment of luminance may be ascribed to the improved efficiency of recombination in the region of the emission layers by the deposition of CuPc as hole injection layer and the low work function of the Li-Al electrode compared to the Al electrode.

  • PDF

Pest Control Effect using Unmanned Automatic Pesticide Spraying Device in Vegetable Greenhouse (시설채소 온실에서 무인 자동 약제 살포장치를 이용한 해충 방제효과)

  • Lee, Jung Sup;Lee, Jae Han;Bang, Ji Wong;Kim, Jin Hyun;Jang, Hye Sook
    • Journal of Bio-Environment Control
    • /
    • v.31 no.1
    • /
    • pp.52-59
    • /
    • 2022
  • Pest control treatment was carried out using an unmanned automatic pesticide spraying system that can spray pesticides on crops while moving autonomously to control pests in vegetable greenhouse. As a result of examining the control effect on tomato and strawberry on thrips (Frankliniella occidentalis) and greenhouse whitefly (Trialeurodes vaporariorum) pests, 85.6% of yellow flower thrips were found in tomatoes and 87.5% in strawberries, and 81.7% (tomato) and 80.6% (strawberry) of greenhouse whitefly. In addition, the control effect according to the pesticide treatment method showed a control effect of 81.7% of the chemical spraying treatment by manpower and 83.9% of the automatic moving pesticide spraying treatment (F=22.1, p < 0.001). When comparing the control effect between the two treatment sections, there was no significance, but the automatic transfer spraying treatment showed a 2.2% higher effect. On the other hand, as a result of comparing the spraying time of the drug, the automatic unmanned control sprayer had a spraying time of 5 min/10a, which took about 25 min less than the conventional manpower spraying time of 25-30 min/10a. Based on these results, it was judged that the automatic transfer spraying method could be usefully used for efficient pest control in the facility greenhouse during the peak period of development.

The impact of post-warming culture duration on clinical outcomes of vitrified-warmed single blastocyst transfer cycles

  • Hwang, Ji Young;Park, Jae Kyun;Kim, Tae Hyung;Eum, Jin Hee;Song, Haengseok;Kim, Jin Young;Park, Han Moie;Park, Chan Woo;Lee, Woo Sik;Lyu, Sang Woo
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.47 no.4
    • /
    • pp.312-318
    • /
    • 2020
  • Objective: The objective of the study was to compare the effects of long-term and short-term embryo culture to assess whether there is a correlation between culture duration and clinical outcomes. Methods: Embryos were divided into two study groups depending on whether their post-warming culture period was long-term (20-24 hours) or short-term (2-4 hours). Embryo morphology was analyzed with a time-lapse monitoring device to estimate the appropriate timing and parameters for evaluating embryos with high implantation potency in both groups. Propensity score matching was performed to adjust the confounding factors across groups. The grades of embryos and blastocoels, morphokinetic parameters, implantation rate, and ongoing pregnancy rate were compared. Results: No significant differences were observed in the implantation rate or ongoing pregnancy rate between the two groups (long-term culture group vs. short-term culture group: 56.3% vs. 67.9%, p=0.182; 47.3% vs. 53.6%, p=0.513). After warming, there were more expanded and hatching/hatched blastocysts in the long-term culture group than in the short-term culture group, but there was no significant between-group difference in embryo grade. Regarding pregnancy outcomes, the time to complete blastocyst re-expansion after warming is shorter in women who became pregnant than in those who did not in both culture groups (long-term: 2.19±0.63 vs. 4.11±0.81 hours, p=0.003; short-term: 1.17±0.29 vs. 1.94±0.76 hours, p=0.018, respectively). Conclusion: The outcomes of short-term culture and long-term culture were not significantly different in vitrified-warmed blastocyst transfer. Regardless of the post-warming culture time, the degree of blastocyst re-expansion 3-4 hours after warming is an important marker for embryo selection.

Evaluation of Bearing Capacity Enhancement Effect of Base Expansion Micropile Based on a Field Load Test (현장재하시험을 통한 선단확장형 마이크로파일의 지지력 증대효과 분석)

  • Kim, Seok-Jung;Lee, Seokhyung;Han, Jin-Tae ;Hwang, Gyu-Cheol;Lee, Jeong-Seob ;Yoo, Mintaek
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.4
    • /
    • pp.31-44
    • /
    • 2023
  • A base expansion micropile was developed to improve the bearing capacity of the micropile, which bears a simple device installed at the pile base. Under an axial load, this base expansion structure radially expands at the pile tip and attaches itself around ground, compressing the boring wall in the construction stage. In this study, conventional and base expansion micropiles were constructed in the weathered rock where micropiles are commonly installed. Further, field load tests were conducted to verify the bearing capacity enhancement effect. From the load test results, it was revealed that the shaft resistance of base expansion micropiles was about 12% higher than that of conventional micropiles. The load transfer analysis results also showed that compared to conventional micropiles, the unit skin friction and unit end bearing of base expansion micropiles were 15.4% and 315.1% higher, respectively, in the bearing zone of the micropile.

Analysis of Serious Game Elements of the Contents for Smart Device Based First-Aid Education (스마트 기기 기반 응급 처치 교육 콘텐츠의 기능성 게임 요소 분석 연구)

  • Suh, Dong-hee
    • Cartoon and Animation Studies
    • /
    • s.47
    • /
    • pp.273-294
    • /
    • 2017
  • Korea has suffered numerous casualties due to a lot of accidents caused by safety insufficiency in recent years. Therefore, safety education is more important than ever before, and 'how to educate with what contents' is an important subject. Especially, experience education is effective rather than theoretical education because of the nature of safety education. However, it is not easy to design and develop these safety education programs. There is not much opportunity to access first-aid training, which is a part of safety education, unless it is compulsory to learn through public institutions. As a result, program utilization on safety education in Korea is still insufficient to what it should be. With that taken into account, this study proposed an effective serious game with fun and immersion for medical first-aid education. To do this, we analyzed five medical games through 20 cases of first-aid applications and elicited five factors that enhance the usability of serious games. With an analysis of five medical games, we selected one game to borrow the game rules, and applied the elicited five elements in the forms of level-up structure, iterative learning, compensation outcomes, competition system, and information transfer. The proposed medical education functional games should have 1) a character that plays a role of a patient, 2) a narrative flow that shows the situation, 3) the user should judge the situation and induce first aid. 4) compensation, levels, and simple repetition should be designed, and 5) information should be shared with the others in the given community. The results of this study is believed to contribute to enhance the medical emergency education in Korea.

A Numerical Study on the Performance Analysis of a Solar Air Heating System with Forced Circulation Method (강제순환 방식의 공기가열식 태양열 집열기의 성능분석에 관한 수치해석 연구)

  • Park, Hyeong-Su;Kim, Chul-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.122-126
    • /
    • 2017
  • The aim of this study was to develop a device for solving the heating problem of living space using heated air, utilizing a simple air heater type collector for solar energy. At the present time, this study assessed the possibility of a development system through theoretical calculations for the amount of available energy according to the size change of the air-heated solar energy collector. To produce and supply hot water using the heat energy of the sun, hot water at $100^{\circ}C$ or less was produced using a flat or vacuum tube type collector. The purpose of this study was to research the air heating type solar collector that utilizes heating energy with heating air above $75^{\circ}C$, by designing and manufacturing an air piping type solar collector that is a simpler type than a conventional solar collector system. The analysis results were obtained for the generated air temperature ($^{\circ}C$) and the production of air (kg/h) to determine the performance of air heating by an air-heated solar collector according to the heat transfer characteristics in the collector of the model when a specified amount of heat flux was dropped into a solar collector of a certain size using PHOENICS, which is a heat flow analysis program applying the Finite Volume Method. From the analysis result, the temperature of the air obtained was approximately $40.5^{\circ}C$, which could be heated using an air heating tube with an inner diameter of 0.1m made of aluminum in a collector with a size of $1.2m{\times}1.1m{\times}0.19m$. The production of air was approximately 161 m3/h. This device can be applied to maintain a suitable environment for human activity using the heat energy of the sun.

Implementation of the Color Matching Between Mobile Camera and Mobile LCD Based on RGB LUT (모바일 폰의 카메라와 LCD 모듈간의 RGB 참조표에 기반한 색 정합의 구현)

  • Son Chang-Hwan;Park Kee-Hyon;Lee Cheol-Hee;Ha Yeong-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.3 s.309
    • /
    • pp.25-33
    • /
    • 2006
  • This paper proposed device-independent color matching algorithm based on the 3D RGB lookup table (LUT) between mobile camera and mobile LCD (Liquid Crystal Display) to improve the color-fidelity. Proposed algorithm is composed of thee steps, which is device characterization, gamut mapping, 3D RGB-LUT design. First, the characterization of mobile LCD is executed using the sigmoidal function, different from conventional method such as GOG (Gain Offset Gamma) and S-curve modeling, based on the observation of electro-optical transfer function of mobile LCD. Next, mobile camera characterization is conducted by fitting the digital value of GretagColor chart captured under the daylight environment (D65) and tristimulus values (CIELAB) using the polynomial regression. However, the CIELAB values estimated by polynomial regression exceed the maximum boundary of the CIELAB color space. Therefore, these values are corrected by linear compression of the lightness and chroma. Finally, gamut mapping is used to overcome the gamut difference between mobile camera and moible LCD. To implement the real-time processing, 3D RGB-LUT is designed based on the 3D RGB-LUT and its performance is evaluated and compared with conventional method.

Development of IoT-based real-time Toxic Chemical management System (IoT 기반의 실시간 유해 화학물 관리 시스템 개발)

  • Kang, Min-Soo;Ihm, Chunhwa;Jung, Yong-Gyu;Lee, Minho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.5
    • /
    • pp.143-149
    • /
    • 2016
  • Recent accidents caused by toxic chemicals and the social problems caused by frequent. As of 2010, there are more than 100,000 types of deadly toxic chemicals being distributed throughout Korea, and severely intoxicated patients along with an enormous number of patients can be induced at the time of an accident involving deadly toxic chemicals. Internationally, the seriousness of large-scale disasters due to a NBC disaster (nuclear, biologic and chemical disaster) is being highlighted as well. So, we obtain the information of the RFID tag attached to a glass bottle with containing the toxic chemical to transfer the data to the smart device has been studied a system that can monitor the status of the toxic chemical in real time. The proposed system is the information was sent to the main system using a zigbee communication by recognizing the tag vial containing the toxic chemical with the 13.56MHz bandwidths good permeability. User may check the information in real time by utilizing the smart device. However, the error of the system for managing the toxic chemical generates a result that can not be predicted. Failure of the system was detecting the error by using a comparator as this can cause an error. And the detected error proposed a duplex system so that they do not affect the overall system.