• Title/Summary/Keyword: Transfer device

Search Result 1,123, Processing Time 0.085 seconds

A Study on the Effect of Carbon Nanotube Directional Shrinking Transfer Method for the Performance of CNTFET-based Circuit (탄소나노튜브 방향성 수축 전송 방법이 CNTFET 기반 회로 성능에 미치는 영향에 관한 연구)

  • Cho, Geunho
    • The Journal of the Convergence on Culture Technology
    • /
    • v.4 no.3
    • /
    • pp.287-291
    • /
    • 2018
  • The CNTFET, which is attracting attention as a next-generation semiconductor device, can obtain ballistic or near-ballistic transport at a lower voltage than that of conventional MOSFETs by depositing CNTs between the source and drain of the device. In order to increase the performance of the CNTFET, a large number of CNTs must be deposited at a high density in the CNTFET. Thus, various manufacturing processes to increase the density of the CNTs have been developed. Recently, the Directional Shrinking Transfer Method was developed and showed that the current density of the CNTFET device could be increased up to 150 uA/um. So, this method enhances the possibility of implementing a CNTFET-based integrated circuit. In this paper, we will discuss how to evaluate the performance of the CNTFET device compared to a MOSFET at the circuit level when the CNTFET is fabricated by the Directional Shrinkage Transfer Method.

Customized Serverless Android Malware Analysis Using Transfer Learning-Based Adaptive Detection Techniques (사용자 맞춤형 서버리스 안드로이드 악성코드 분석을 위한 전이학습 기반 적응형 탐지 기법)

  • Shim, Hyunseok;Jung, Souhwan
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.3
    • /
    • pp.433-441
    • /
    • 2021
  • Android applications are released across various categories, including productivity apps and games, and users are exposed to various applications and even malware depending on their usage patterns. On the other hand, most analysis engines train using existing datasets and do not reflect user patterns even if periodic updates are made. Thus, the detection rate for known malware is high, while types of malware such as adware are difficult to detect. In addition, existing engines incur increased service provider costs due to the cost of server farm, and the user layer suffers from problems where availability and real-timeness are not guaranteed. To address these problems, we propose an analysis system that performs on-device malware detection through transfer learning, which requires only one-time communication with the server. In addition, The system has a complete process on the device, including decompiler, which can distribute the load of the server system. As an evaluation result, it shows 90.3% accuracy without transfer learning, while the model transferred with adware catergories shows 95.1% of accuracy, which is 4.8% higher compare to original model.

High Resolution Patternning for Graphene Nanoribbons (GNRs) Using Electro-hydrodynamic Lithography

  • Lee, Su-Ok;Kim, Ha-Nah;Lee, Jae-Jong;Kang, Dae-Joon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.198-198
    • /
    • 2012
  • Graphene has been the subject of intense study in recent years owing to its good optoelectronic properties, possibility for stretchable electronics, and so on. Especially, many research groups have studied about graphene nanostructures with various sizes and shapes. Graphene needs to be fabricated into useful devices with controllable electrical properties for its successful device applications. However, this been far from satisfaction owing to a lack of reliable pattern transfer techniques. Photolithography, nanowire etching, and electron beam lithography methods are commonly used for construction of graphene patterns, but those techniques have limitations for getting controllable GNRs. We have developed a novel nanoscale pattern transfer technique based on an electro-hydrodynamic lithography providing highly scalable versatile pattern transfer technique viable for industrial applications. This technique was exploited to fabricate nanoscale patterned graphene structures in a predetermined shape on a substrate. FE-SEM, AFM, and Raman microscopy were used to characterize the patterned graphene structures. This technique may present a very reliable high resolution pattern transfer technique suitable for graphene device applications and can be extended to other inorganic materials.

  • PDF

Effect of Wavy Flow of Vertical Falling Film on the Absorption Performance (흡수성능에 미치는 수직 액막 파동의 영향에 관한 연구)

  • 김정국;조금남
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.2
    • /
    • pp.194-201
    • /
    • 2004
  • In the present study, the improvement of absorption characteristics on combined heat and mass transfer process in a falling film of a vertical absorber by change of geometric parameters were studied experimentally and analytically. The energy and diffusion equations are solved simultaneously to give the temperature and concentration variations at the liquid solution-refrigerant vapor interface and at the wall. Absorption behaviors of heat and mass transfer were analyzed through falling film of the LiBr aqueous solution contacted by refrigerant vapor in the absorber. Effects of film Reynolds number, geometric parameters by insert device (spring) and flow pattern on heat and mass transfer performances have been also investigated. Especially, effects of the flow pattern by geometric parameters have been considered to observe the total heat and mass transfer rates through falling film along the absorber. As a numerical and experimental result, maximum absorption rate was shown at the wave-flow by insert device (spring). The error ranges between experiment and analysis were from 5.8 to 12% at Re$_{f}$ > 100.0.

Detecting Digital Micromirror Device Malfunctions in High-throughput Maskless Lithography

  • Kang, Minwook;Kang, Dong Won;Hahn, Jae W.
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.6
    • /
    • pp.513-517
    • /
    • 2013
  • Recently, maskless lithography (ML) systems have become popular in digital manufacturing technologies. To achieve high-throughput manufacturing processes, digital micromirror devices (DMD) in ML systems must be driven to their operational limits, often in harsh conditions. We propose an instrument and algorithm to detect DMD malfunctions to ensure perfect mask image transfer to the photoresist in ML systems. DMD malfunctions are caused by either bad DMD pixels or data transfer errors. We detect bad DMD pixels with $20{\times}20$ pixel by white and black image tests. To analyze data transfer errors at high frame rates, we monitor changes in the frame rate of a target DMD pixel driven by the input data with a set frame rate of up to 28000 frames per second (fps). For our data transfer error detection method, we verified that there are no data transfer errors in the test by confirming the agreement between the input frame rate and the output frame rate within the measurement accuracy of 1 fps.

A study on the development of an automated device for the transportation of roof tiles using electromagnetic grippers (전자석 그리퍼를 이용한 기와 받침틀 이송 자동화 장비 개발에 관한 연구)

  • Byung-Soo Kang;Hyeong-Min Yoo
    • Design & Manufacturing
    • /
    • v.17 no.2
    • /
    • pp.1-8
    • /
    • 2023
  • This study aims to enhance the price and quality competitiveness of imported tiles by developing a robotic tile production automation line. The development process involved several steps, such as requirement analysis, derivation of technical specifications, conceptual design, engineering feasibility review, detailed design, and production. Emphasis was placed on the transfer process of the tiles' molds, and technological advancements were achieved through engineering interpretation, feasibility review, and performance evaluation. The developed automation system incorporates key specifications to ensure a transfer success rate of over 90%, thereby ensuring stable transportation of the tiles and minimizing defect rates during production. The maximum weight capacity for tile pick-up was set above 6 kg, allowing effective handling of tiles weighing 6 kg or less in automated tasks. Furthermore, the system enables safe and precise movement of the tiles to the desired location, with a transfer distance of at least 1.3 m and a transfer speed exceeding 0.2 m/sec, thereby increasing production efficiency.

Enhancement of Data Flow for Multimedia Platform (멀티미디어 플랫폼의 데이터 흐름 개선)

  • 정하재
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.515-518
    • /
    • 1998
  • This paper describes a direct transfer method of multimedia data stream between multimedia processor and network device without using system memory. The hardware architecture and functions for direct transfer, the method to transfer multimedia data to and from the multimedia processor and etc are described. Comparing the proposed method with general methods, I show that the direct transfer method can decrease number of bus accesses and bus cycles.

  • PDF

A Study on Characteristics of Organic Light-Emitting Device with Various Cathodes (음극전극의 종류에 따른 유기발광소자의 특성에 관한 연구)

  • 노병규;김중연;오환술
    • Proceedings of the IEEK Conference
    • /
    • 2000.11b
    • /
    • pp.37-40
    • /
    • 2000
  • This paper has been studied on characteristics of organic light-emitting device with various cathode materials. These catode materials were Al:Li(5%), Al, Cu, CsF/Al. And in these devices, HTL(hole transfer layer) was TPD and EML(emitting layer) was Alq$\sub$3/. We studied the I-V characteristics for each device. And then, the turn-on voltage of device for Al-Li(5%), Al, Cu, CsF/Al cathode were 7, 9, 13, 3V respectively. So, the CsF/Al cathode is superior to other cathode materials for I-V characteristics.

  • PDF

Study on the Prediction of Absorption Performance by the Optimization of a Vertical Absorber (수직형 흡수기 최적화에 따른 흡수 성능 예측에 관한 연구)

  • Kim, Jung-Kuk;Cho, Keum-Nam
    • Journal of Energy Engineering
    • /
    • v.14 no.3 s.43
    • /
    • pp.194-202
    • /
    • 2005
  • The present study was analytically and experimentally carried out to predict the absorption characteristics on combined heat and mass transfer process in a vertical falling film of variable absorbers. Heat and mass transfer enhancements were analytically investigated. Effects of geometric parameters by insert device (spring) and corrugate, flow pattern on absorption performances has been also investigated. Especially, the optimal values of absorber geometry (ID=22.8mm, L=1150m) and kinetic variables (solution flow rate, flow pattern) for maximum absorption performance has been predicted by the numerical analysis. The maximum absorption performance in a numerical analysis and experiment was shown at the wavy-flow by insert device (spring).

A Study on the Shift Motor Driving System Optimization of 4-WD Power Transformation Device (4-WD 동력전환장치의 변속 모터 구동부 최적화에 관한 연구)

  • Youm, Kwang Wook;Ham, Seong Hun;Oh, Se Hoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.11
    • /
    • pp.1187-1192
    • /
    • 2013
  • In the case of 4 wheel drive (4-WD) type car, power switching occurs to 4-WD by operating lever or switch that operates power switching device attached in transfer case which can operate motor by electric signal. So if the RPM of motor is high, power switching will not exactly occur and can cause damage to gear in transfer case according to circumstances. So in this study, we applied 2 level of planet gear type motor spindle of motor drive part of a power train. And conducted decelerating to increase torque to switch power safe and accurately. Also, we researched efficiency of gear by designing reduction gear ratio and gear type and by calculating contact stress and bending strength. Based on researched content, we made drive head of power switching device and a reduction module which uses type that uses motor spindle as sun gear and ring gear as cover.