• Title/Summary/Keyword: Transfer Path Analysis

Search Result 246, Processing Time 0.02 seconds

Computational Heat Transfer Analysis of High Temperature Solar Receiver (수치해석기법을 이용한 고온태양열 흡수기의 열성능 분석)

  • Kim, Tae-Jun;Oh, Sang-June;Lee, Jin-Gyu;Seo, Tae-Beom
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.49-54
    • /
    • 2009
  • This study focus on verification of the thermal efficiency of volumetric receiver with $5kW_{th}$ Dish-type solar thermal system. Spiral flow path shaped on receiver and working fluid(steam) flow along the this flow path. Porous material for radiation-thermal conversion used in former researches are substituted with the stainless steel wall installed along the spiral shaped flow path. Numerical analysis for the flow path and temperature distributions are carried out. Numerical results are compared with experimental data. Using the numerical model, the heat transfer characteristics of spiral type receiver for dish-type solar thermal systems are known and the thermal performance of the receiver can be estimated.

  • PDF

The Moderating Effects of Specificity of Technology in the Knowledge Transfer of Distributive Manufacturing MNEs (유통제조 기업의 해외 자회사 지식이전에서 기술특유성의 조절효과)

  • Cho, Yeon-Sung
    • Journal of Distribution Science
    • /
    • v.14 no.9
    • /
    • pp.121-132
    • /
    • 2016
  • Purpose - This study has the following objectives. First, it seeks to build an integrated model that can analyze the path through which headquarters, subsidiary competence, and knowledge transfer performance influence subsidiary performance. Second, it analyzes the influence of the specificity of technology as a moderating effect factor on knowledge transfer process. Third, it will conduct an empirical analysis on distributive manufacturing MNEs and suggests an implication for companies that actually need technological localization. The difference of this study are as follows. First, unlike the existing studies, this study can expand a theoretical discussion as it uses subsidiary performance as the dependent variable. Second, it sets the specificity of technology as a moderating effect factor, not an antecedent, and can draw a theoretical implication. Research design, data, and methodology - This study built a path analysis model to identify the influence of the disseminative capacity and absorptive capacity of distributive manufacturing MNEs on subsidiary performance. Based on the previous studies, it set 19 items as 5 latent variables, and established 6 hypotheses by including the moderating effect of the specificity of technology between them. The final 203 companies were selected as analysis samples through a survey questionnaire. For empirical analysis, the study used PLS (Partial Least Square) that is based on structural equation model. Results - The empirical analysis result demonstrated that both headquarters' disseminative capability and subsidiaries absorptive capacity had a positive influence on knowledge transfer performance. Knowledge transfer performance also had a positive influence on subsidiary performance. In the analysis of moderating effect, the specificity of technology acted as a significant moderating variable only between knowledge transfer performance and subsidiary performance; it did not show a statistically significant moderating effect among disseminative capability, absorptive capacity, and knowledge transfer performance. Conclusions - The empirical analysis results of this study demonstrate the importance of disseminative capability and absorptive capacity in knowledge transfer to subsidiaries from the distributive manufacturing MNEs in Korea. The analysis on the moderating effect indicates that the specificity of technology in Korean companies influences on the process of making achievement by using the transferred knowledge.

Integrated Test and Evaluation for Improvement of Vehicle Road Noise (승용차의 도로면 발생 소음 개선을 위한 시험 및 평가 연구)

  • 고강호;허승진;국형석
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.5
    • /
    • pp.327-333
    • /
    • 2003
  • Several tests are performed to evaluate road booming noise. Baseline test delivers the information of road noise characteristics. Coupling effect between structure and acoustics is obtained from the mode shapes and the natural frequencies by the modal test. Equivalent stiffness at joint areas between chassis and car-body system can be determined by the input point inertance test. Noise sensitivity of body mounting point of a chassis part can be obtained from the noise transfer function test with input point inertance test. Operational deflection shape makes us analyze the actual vibration modes of the chassis system under actual leading and find noise sources very easily. Finally, the transfer path analysis is used to Identify noise Paths through the chassis system. The objectives and the procedures of the tests are described in this Paper Also, the guideline for efficient road noise evaluation test can be found.

Road Noise Estimation Based on Transfer Path Analysis Using a Simplified Tire Vibration Transfer Model (단순화된 타이어 진동전달 모델의 전달경로분석법을 이용한 로드노이즈 예측기술 개발)

  • Shin, Taejin;Park, Jongho;Lee, Sangkwon;Shin, Gwangsoo;Hwang, Sungwook
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.2
    • /
    • pp.176-184
    • /
    • 2013
  • Quantification of road noise is a challenging issue in the development of tire noise since its transfer paths are complicated. In this paper, a simplified model to estimate the road noise is developed. Transfer path of the model is from wheel to interior. The method uses the wheel excitation force estimated throughout inverse method. In inversion procedure, the Tikhonov regularization method is used to reduce the inversion error. To estimate the wheel excitation force, the vibration of knuckle is measured and transfer function between knuckle and wheel center is also measured. The wheel excitation force is estimated by using the measured knuckle vibration and the inversed transfer function. Finally interior noise due to wheel force is estimated by multiplying wheel excitation force in the vibro-acoustic transfer function. This vibro-acoustic transfer function is obtained throughout measurement. The proposed method is validated by using cleat excitation method. Finally, it is applied to the estimation of interior noise of the vehicle with different types of tires during driving test.

An Analytical Study on the Heat Transfer Characteristics of MF Evaporation Tubes Attached with a Fin (핀이 부착된 MF증발관의 열전달 특성에 대한 해석적 연구)

  • Park, Yong-Seok;Seong, Hong-Seok;Suh, Jeong-Se
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.1
    • /
    • pp.48-56
    • /
    • 2021
  • In this study, the heat transfer process around the finned channel tubes is numerically examined. Serially arranged tubes of an evaporator were used for heat exchange. The numerical analysis results confirmed that the vortex generated at the rear of the channel pipe was caused by the fin. Furthermore, it was also confirmed that the temperature difference was large between the inlet and outlet ends of the fin. The temperature of the location where the fin was attached to the channel pipe was found to be close to the surface temperature of the channel wall. However, the temperature rose rapidly closer to the ambient air temperature of 350 K towards the fin end, located at a distance of 0.035 m; it was found to have a significant influence on the heat transfer around the fin-attached channel tube. The wider the vertical flow path, the lower the total heat transfer coefficient. However, the overall heat transfer coefficient increased as the horizontal flow path narrowed. The increment is attributed to an increase in the heat transfer amount due to increased heat transfer surface.

Prediction of Interior Noise by Excitation Force of Powertrain Based on Hybrid Transfer Path Analysis (Hybrid TPA를 이용한 파워트레인 구조기인 실내소음 예측)

  • Kim, Sung-Jong;Lee, Sang-Kwon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.12
    • /
    • pp.117-124
    • /
    • 2008
  • In early design stage, the simulation of interior noise is useful for the enhancement of the noise, vibration and harshness (NVH) performance in a vehicle. The traditional transfer path analysis (TPA) technology cannot simulate the interior noise since it uses the experimental method. In order to solve this problem, in this paper, the hybrid TPA is developed as the novel approach. The hybrid TPA uses the simulated excitation force as the input force, which excites the flexible body of a car at the mount point, while the traditional TPA uses the measured force. This simulated force is obtained by numerical analysis for the FE (finite element) model of a powertrain. The interior noise is predicted by multiplying the simulated force by the vibro-acoustic transfer function (VATF) of the vehicle. The VATF is the acoustic response in the compartment of a car to the input force at the mount point of the powertrain in the flexible car body. The trend of the predicted interior noise based on the hybrid TPA very well corresponds to the measured interior noise, although there is some difference due to not only the experimental error and the simulation error but also the effect of the air-borne path.

Evaluation of the Inputs Efficiency for the Interior Noise of the Vehicle using Vector Synthesis Method (벡터합성법을 이용한 차량 실내소음의 입력원 영향도 평가)

  • Yang, In-Hyung;Jeong, Jae-Eun;Oh, Jae-Eung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.6
    • /
    • pp.562-567
    • /
    • 2010
  • A passenger vehicle has various and complicated transmission paths of sound and vibration. In order to identify the mechanism of transfer path, estimation of excitation force and exact modeling of transfer path are required. In this paper vector synthesis technique is employed to identify the characteristics of road noise and its transmission to vehicle compartment through noise and vibration analysis. Vibration reduction efficiency of each transfer path is evaluated by comparing individual vector components obtained virtual simulation. The degree of effect is used to estimate the contribution of vibration input components to total output. And in this paper presents a new technique based on simulation studies using vector synthesis diagram and design of experiments, by which the effects of magnitude and phase change of input paths can be predicted.

Idle Quality Optimization Study (공회전시 차량의 소음진동현상의 질적개선에 대한 고찰)

  • ;Norbert Wiehagen
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.342-352
    • /
    • 2003
  • Idle NVH characteristics are one of the most important aspects among the vehicle performances. Vehicle developers are devoted to improve vehicle interior noise and steering wheel and seat vibrations. In order to improve the idle quality, noise and vibration transfer path should be carefully evaluated. Also, effects of various components related to the idle performance should be confirmed. A general procedure for improving the idle qualify is described in detail. The relationship among cylinder pressure characteristics, crankshaft rotational speed variation, and vehicle vibrations is also investigated. Influences of drive shaft, torque converter, air conditioning system, vehicle structure including engine mount system, and idle control parameters on the vehicle idle quality are studied. Weak points of typical vehicles on the idle qualify are identified. Some of improvement measures are proposed and verified.

  • PDF

Transfer Path Analysis of Output Noise Using Multi-dimensional Spectral Analysis Method for Vacuum Cleaner (다차원 스펙트럼 해석법을 이용한 진공청소기 출력소음의 전달경로 해석)

  • Jeong, Jae-Eun;Lee, Jung-Hwan;Chung, Chang-Ook;Hwang, Geun-Bae;Oh, Jae-Eung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.10
    • /
    • pp.940-945
    • /
    • 2010
  • Noise reduction of vacuum cleaner is important, according as get into standard that estimate quality of product. To reduce noise of vacuum cleaner, we need analysis of correct noise source and contribution grasping about Identified noise sources' output noise. Because noise sources' correlation exists in vacuum cleaner that is small and complicated system, analysis is not easy. In this case, we need to apply Multi-dimensional spectral analysis(MDSA) method that can remove correlation between noise sources and grasp pure contribution degree of noise sources. In this study, we take transfer path analysis between output noise and noise that measured in inside/outside of vacuum cleaner.

A Study on the Transmitted Energy Contribution Analysis of SUV Engine Mount by Vibration Power Flow Measurement (진동 파워흐름 측정을 통한 SUV용 엔진 마운트의 에너지 전달 기여도 분석에 관한 연구)

  • Kim, Su-Gon;Lee, Sang-Kwon;Kim, Sung-Jong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.4
    • /
    • pp.400-410
    • /
    • 2008
  • Reduction of structure-borne noise in the compartment of a car is an important task in automotive engineering. Many methods which analyze noise transfer path have been generally used for structure-borne noise. These methods are useful in solving particular problem but do not quantify the effectiveness of vibration isolation for each isolator of a vehicle. To quantify the effectiveness of vibration isolation, the vibrational power flow measurement has been used for a simple isolation system or a laboratory based isolation system. This paper identifies the transfer path of booming noise in a SUV. The powertrain used for test has a in-line 4cylinder engine and 5-shift auto-transmission. This powertrain is transversely supported by four isolators. We calculated the energy flow throughout four isolator by the measurement of power flow and the contribution of energy flow at each isolator.