• Title/Summary/Keyword: Transfer Path

Search Result 641, Processing Time 0.029 seconds

Selecting the Geographical Optimal Safety Site for Offshore Wind Farms to Reduce the Risk of Coastal Disasters in the Southwest Coast of South Korea (국내 서남해권 연안재해 리스크 저감을 위한 지리적 해상풍력단지 최적 입지 안전구역 선정 연구)

  • Kim, Jun-Gho;Ryu, Geon-Hwa;Kim, Young-Gon;Kim, Sang-Man;Moon, Chae-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.5
    • /
    • pp.1003-1012
    • /
    • 2022
  • The horizontal force transfer to the turbine and substructure of a wind power generation system is a very important factor in maintaining the safety of the system, but it is inevitably vulnerable to large-scale coastal disasters such as earthquakes and typhoons. Wind power generation systems built on the coast or far offshore are very disadvantageous in terms of economic feasibility due to an increase in initial investment cost because a more robust design is required when installed in areas vulnerable to coastal disasters. In this study, the GIS method was used to select the optimal site for a wind farm from the viewpoint of reducing the risk of coastal disasters. The current status of earthquakes in the West and South Seas of Korea, and the path and intensity of typhoons affecting or passing through the West and South Seas were also analyzed. Accordingly, the optimal offshore wind farm site with the lowest risk of coastal disasters has been selected and will be used as basic research data for offshore wind power projects in the region in the future.

Train Crowdedness Analysis Model for the Seoul Metropolitan Subway : Considering Train Scheduling (열차운행계획을 반영한 수도권 도시철도 열차 혼잡도 분석모형 연구)

  • Lee, Sangjun;Yun, Seongjin;Shin, Seongil
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.3
    • /
    • pp.1-17
    • /
    • 2022
  • Accurate analysis of the causes of metro rail traffic congestion provides a means of addressing issues arising from metro rail traffic congestion in metropolitan areas. Currently, congestion analysis based on counting, weight detection, CCTVs, and mobile Wi-Fi is limited by poor accuracies or because studies have been restricted to single routes and trains. In this study, a train congestion analysis model was used that includes the transfer and multi-path behavior of metro passengers and train operation plans for metropolitan urban railroads. Analysis accuracy was improved by considering traffic patterns in which passengers must wait for next trains due to overcrowding. The model updates train crowding levels every 10 minutes, provides information to potential passengers, and thus, is expected to increase the social benefits provided by the Seoul metropolitan subway

Deep Learning-based Approach for Visitor Detection and Path Tracking to Enhance Safety in Indoor Cultural Facilities (실내 문화시설 안전을 위한 딥러닝 기반 방문객 검출 및 동선 추적에 관한 연구)

  • Wonseop Shin;Seungmin, Rho
    • Journal of Platform Technology
    • /
    • v.11 no.4
    • /
    • pp.3-12
    • /
    • 2023
  • In the post-COVID era, the importance of quarantine measures is greatly emphasized, and accordingly, research related to the detection of mask wearing conditions and prevention of other infectious diseases using deep learning is being conducted. However, research on the detection and tracking of visitors to cultural facilities to prevent the spread of diseases is equally important, so research on this should be conducted. In this paper, a convolutional neural network-based object detection model is trained through transfer learning using a pre-collected dataset. The weights of the trained detection model are then applied to a multi-object tracking model to monitor visitors. The visitor detection model demonstrates results with a precision of 96.3%, recall of 85.2%, and an F1-score of 90.4%. Quantitative results of the tracking model include a MOTA (Multiple Object Tracking Accuracy) of 65.6%, IDF1 (ID F1 Score) of 68.3%, and HOTA (Higher Order Tracking Accuracy) of 57.2%. Furthermore, a qualitative comparison with other multi-object tracking models showcased superior results for the model proposed in this paper. The research of this paper can be applied to the hygiene systems within cultural facilities in the post-COVID era.

  • PDF

Evaluation of Efficiency of SVE from Lab-scale Model Tests and Numerical Analysis (실내모형시험과 수치해석을 통한 SVE의 효율성 평가)

  • Suk, Heejun;Seo, Min Woo;Ko, Kyung-Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1B
    • /
    • pp.137-147
    • /
    • 2008
  • Soil Vapor Extraction (SVE) has been extensively used to remove volatile organic compounds (VOCs) from the vadoze zone. In order to investigate the removal mechanism during SVE operation, laboratory modeling experiments were carried out and tailing effect could be observed in later stage of the experiment. Tailing effect means that removal rate of contaminants gets significantly to decrease in later stage of SVE operation. Also, mathematical model simulating the tailing effect was used, which considers rate-limited diffusion in a water film during mass transfer among gas, liquid, and solid phases. Measurement data obtained through the experiment was used as input data of the numerical analyses. Sensitivity analysis was performed to examine the effect of each parameter on required time to reach final target concentration. Finally, it was found that the concentration in the soil phase decreased significantly with a liquid and gas diffusion coefficient larger, actual path length shorter, and water saturation smaller.

Performance Analysis of Slave-Side Arbitration Schemes for the Multi-Layer AHB BusMatrix (ML-AHB 버스 매트릭스를 위한 슬레이브 중심 중재 방식의 성능 분석)

  • Hwang, Soo-Yun;Park, Hyeong-Jun;Jhang, Kyoung-Son
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.34 no.5_6
    • /
    • pp.257-266
    • /
    • 2007
  • In On-Chip bus, the arbitration scheme is one of the critical factors that decide the overall system performance. The arbitration scheme used in traditional shared bus is the master-side arbitration based on the request and grant signals between multiple masters and single arbiter. In the case of the master-side arbitration, only one master and one slave can transfer the data at a time. Therefore the throughput of total bus system and the utilization of resources are decreased in the master-side arbitration. However in the slave-side arbitration, there is an arbiter at each slave port and the master just starts a transaction and waits for the slave response to proceed to the next transfer. Thus, the unit of arbitration can be a transaction or a transfer. Besides the throughput of total bus system and the utilization of resources are increased since the multiple masters can simultaneously perform transfers with independent slaves. In this paper, we implement and analyze the arbitration schemes for the Multi-Layer AHB BusMatrix based on the slave-side arbitration. We implement the slave-side arbitration schemes based on fixed priority, round robin and dynamic priority and accomplish the performance simulation to compare and analyze the performance of each arbitration scheme according to the characteristics of the master and slave. With the performance simulation, we observed that when there are few masters on critical path in a bus system, the arbitration scheme based on dynamic priority shows the maximum performance and in other cases, the arbitration scheme based on round robin shows the highest performance. In addition, the arbitration scheme with transaction based multiplexing shows higher performance than the same arbitration scheme with single transfer based switching in an application with frequent accesses to the long latency devices or memories such as SDRAM. The improvements of the arbitration scheme with transaction based multiplexing are 26%, 42% and 51%, respectively when the latency times of SDRAM are 1, 2 and 3 clock cycles.

Computational Fluid Dynamics Model for Solar Thermal Storage Tanks with Helical Jacket Heater and Upper Spiral Coil Heater (상부 코일히터를 갖춘 나선재킷형 태양열 축열조의 성능예측을 위한 CFD 해석모델 개발 및 검증)

  • Baek, Seung Man;Zhong, Yiming;Nam, Jin Hyun;Chung, Jae Dong;Hong, Hiki
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.4
    • /
    • pp.331-341
    • /
    • 2013
  • In a solar domestic hot water (SDHW) system, solar energy is collected using collector panels, transferred to a circulating heat transfer fluid (brine), and eventually stored in a thermal storage tank (TST) as hot water. In this study, a computational fluid dynamics (CFD) model was developed to predict the solar thermal energy storage in a hybrid-type TST equipped with a helical jacket heater (mantle heat exchanger) and an immersed spiral coil heater. The helical jacket heater, which is the brine flow path attached to the side wall of a TST, has advantages including simple system design, low brine flow rate, and enhanced thermal stratification. In addition, the spiral coil heater further enhances the thermal performance and thermal stratification of the TST. The developed model was validated by the good agreement between the CFD results and the experimental results performed with the hybrid-type TST in SDHW settings.

A Study on the Thermo-Flow Analysis of Air Conditioning Electric Compressor Motor System for Hybrid Electric Vehicles (하이브리드 자동차 에어컨용 전동식 압축기 모터 시스템의 열유동 해석 연구)

  • Kim, Sung Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.2
    • /
    • pp.592-597
    • /
    • 2013
  • The heat generated at the motor and inverter inside the electric compressor of inverter built-in type is mainly cooled by refrigerant and generally, there is not a thermal problem. However, the close relation of heat transfer from the motor and inverter parts to the compression part affects on compressor efficiency. Also, according to the surrounding environment and system operation condition, the increased temperature of the motor and inverter can affect the power density of the motor system, and especially, the inverter may be prevented to operate by the temperature limits. In this study, we performed thermo-flow analysis of electric compressor motor system, and investigated the heat dissipation enhancement of the motor and inverter. The motor part in the operation region of the electric compressor was generally maintained at low temperature and the inverter part at high compressor speed was lower temperature than the temperature limit of $85^{\circ}C$. However, the case of the inverter at low speed harsh condition was in excess of $10^{\circ}C$. Therefore, in order to solve the thermal problem, the heat reduction technology of the motor and inverter is essential as well as the improvement of flow path in the compressor.

The Role of Postdoctoral Experience in Research Performance and the Size of Research Network of Young Researchers: An Empirical Study on S&T Doctoral Degree Holders (신진연구자의 연구 성과 및 연구 네트워크 규모에서 포닥 경험의 역할: 이공계 박사학위 취득자를 대상으로)

  • Ko, Yun Mi
    • Journal of Technology Innovation
    • /
    • v.24 no.4
    • /
    • pp.1-26
    • /
    • 2016
  • The period after the PhD has a huge impact on the careers of researcher from a researcher lifecycle perspective. This is a turning point which student receives guidance from professor and become an independent researcher. Furthermore, they learn to develop ideas for independent research, apply for grants and manage a project; they also form expert networks in related filed and publish papers to share their findings. This study focuses on the period between earning doctoral degree and being employed as a stable position in university. This study starts from a research questions that asks which factors of postdoctoral experience affect research output. In this study, the paper performance, especially co-authorship of paper, of postdoctoral researchers was investigated. The cumulative advantage theory and Matthew effect were employed to shed a light on this research question. The empirical work is based on the Survey & Analysis of National R&D program in Korea conducted by Korea Institute of S&T Evaluation and Planning (KISTEP). The correlations between the research output and characteristics of postdoctoral experience were verified. These results are expected to contribute as new empirical evidences on investigating knowledge transfer activities of new PhDs.

Analysis of Temperature Influence Experiment on Green Spaces in Campus (캠퍼스 내 녹지공간의 온도분석 및 온도영향요인 규명 실험)

  • Kim, Jaekyoung;Kim, Wonhee;Kim, Eunil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.2
    • /
    • pp.511-520
    • /
    • 2020
  • Owing to global warming, heat waves have become stronger in the summer, and research on improving the thermal environment of green spaces, such as urban parks, is being conducted. On the other hand, studies on improving the urban thermal environment, which is changing due to the greening pattern and the intensity of the wind, are still insufficient. This study analyzed the temperature of the green spaces on campus to understand the factors affecting the temperature changes. After investigating the covering condition and planting form of the site, factors, such as temperature, humidity, wind direction, wind speed, and illuminance, were measured. The most influential factors on the temperature distribution are evapotranspiration and wind - induced heat transfer. The other major factors affecting the temperature change were the type of cover, wind velocity/wind direction, type of planting, shade / solar irradiance. In the type of cover, the plant was classified as low temperature, and the asphalt pavement was classified as high temperature. In wind speed, instantaneous temperature was reduced by 1.2 ℃ in southern wind, 0.7 ℃ in the westerly wind, 0.4 ℃ in the north wind and 0.5 ℃ in the east wind when a wind of 3.5m/s or more was blown.

A Study on the Energy Efficient Data Aggregation Method for the Customized Application of Underwater Wireless Sensor Networks (특정 응용을 위한 수중센서네트워크에서 에너지 효율적인 데이터통합 방법 연구)

  • Kim, Sung-Un;Park, Seon-Yeong;Yu, Hyung-Cik
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.11
    • /
    • pp.1438-1449
    • /
    • 2011
  • UWSNs(Underwater Wireless Sensor Networks) need effective modeling fitted to the customized type of application and its covering area. In particular it requires an energy efficient data aggregation method for such customized application. In this paper, we envisage the application oriented model for monitoring the pollution or intrusion detection over a given underwater area. The suggested model is based on the honeycomb array of hexagonal prisms. In this model, the purpose of data aggregation is that the head node of each layer(cluster) receives just one event data arrived firstly and transfer this and its position data to the base station effectively in the manner of energy efficiency and simplicity without duplication. Here if we apply the existent data aggregation methods to this kind of application, the result is far from energy efficiency due to the complexity of the data aggregation process based on the shortest path or multicast tree. In this paper we propose three energy efficient and simple data aggregation methods in the domain of cluster and three in the domain of inter-cluster respectively. Based on the comparative performance analysis of the possible combination pairs in the two domains, we derive the best energy efficient data aggregation method for the suggested application.