• 제목/요약/키워드: Transfer Layer

검색결과 1,530건 처리시간 0.023초

불응축가스가 평판위 응축열전달에 미치는 영향에 관한 연구 (A study on effect of heat transfer of condensation including noncondensable gas over a flat plate)

  • 양대일;정형호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제24권1호
    • /
    • pp.25-30
    • /
    • 2000
  • In present paper, mass transfer over a flat plate with film condensation including noncondesable gas is analyzed with the help of similarity methods. Couette flow was assumed in liquid film and boundary-layer approximation was used in the ambient flow. Governing equations were transformed into the ordinary differential equtions by the similarity methods. Runge-Kutta and shooting method were used in order to fine the effect of mass transfer on the velocity and concentrations at the liquid-vapor interface.

  • PDF

Micromagnetic Simulations for Spin Transfer Torque in Magnetic Multilayers

  • You, Chun-Yeol
    • Journal of Magnetics
    • /
    • 제17권2호
    • /
    • pp.73-77
    • /
    • 2012
  • We investigate spin transfer torque (STT) in magnetic multilayer structures using micromagnetic simulations. We implement the STT contribution for magnetic multilayer structures in addition to the Landau-Lifshitz-Gilbert (LLG) micromagnetic simulators. In addition to the Sloncewski STT term, the zero, first, and second order field-like terms are also considered as well as the effects of the Oersted field due to the running current are addressed. We determine the switching current densities of the free layer with the exchange biased synthetic ferrimagnetic reference layers for various cases.

농산물 저장 시설에서의 열대류 현상의 해석 (An Analysis of Thermal Convection in Agricultural-Products Storge System)

  • 김민찬;현명택;고정삼
    • 한국식품저장유통학회지
    • /
    • 제4권1호
    • /
    • pp.27-32
    • /
    • 1997
  • Natural convection in agricultural-products storage system was analysed theoretically, The storage system was modelled by Internally heated fluid saturated porous layer. Darcy's law was used to explain characteristics of fluid motion. Stability equations were obtained under the linear stability theory and transfer characteristics were modelled by the shape assumption. Based on the modelling of transfer characteristics, heat trasnfer correlations were derived theoretically.

  • PDF

플라즈마 용사층에 발생하는 응력해석 (Analysis of thermal stresses developed in plasma sprayed layer)

  • 배강열;김희진
    • Journal of Welding and Joining
    • /
    • 제8권4호
    • /
    • pp.58-68
    • /
    • 1990
  • The formation of thermal stresses by plasma spraying is generally considered as adverse. Therefore, the knowledge of stress distribution in the deposited layer during and after plasma spraying will be of special interest. In this study finite difference heat transfer analysis and finite element stress analysis were carried out to predict the change of stress distribution in the plasma coated layer with the variations of preheat temperature, number of scan, particle size, and bond coat. The results of the numerical analysis were as follows: 1) Transient stresses developed in the coated layer were up to the level of yiedl strength at the temperature. 2) The tensile stresses were developed in the deposited layer and the surface of the substrate, but the compressive stresses were developed in the rest of the substrate. 3) Transient and residual stresses were significantly affected by the preheat temperature. 4) The variations of temperature of powder particle and number of torch scan changed tensile stress distribution, but made no difference on the magnitude of the stresses. 5) Bond coated layer reduced the stree level of deposited layer.

  • PDF

Spin Torque Nano-Oscillator with an Exchange-Biased Free Rotating Layer

  • You, Chun-Yeol
    • Journal of Magnetics
    • /
    • 제14권4호
    • /
    • pp.168-171
    • /
    • 2009
  • We propose a new type of spin torque nano-oscillator structure with an exchange- biased free rotating layer. The proposed spin torque nano-oscillator consists of a fixed layer and a free rotating layer with an additional anti-ferromagnetic layer, which leads to an exchange bias in the free rotating layer. The spin dynamics of the exchange-biased free rotating layer can be described as an additional exchange field because the exchange bias manifests itself by the existance of a finite exchange bias field. The exchange bias field plays a similar role to that of a finite external field. Hence, microwave generation can be achieved without an external field in the proposed structure.

Behavior of Water Vapor Permeability on Layered System

  • Oh, Ae-Gyeong
    • 한국의류산업학회지
    • /
    • 제11권2호
    • /
    • pp.359-362
    • /
    • 2009
  • This study investigates the behavior of water vapor permeability of a layered system to find out a comfortable combination of a layered system for outdoor activities and examines the water vapor permeability of various types of outdoor clothing fabrics. The layered system includes the base layer such as sportswool and polyester/cotton fabrics, the middle layer such as single and double sided fleece fabrics, and the shell layer such as polyurethane-coated, PTFE-laminated and microfiber fabrics in this experiment. Results show that the layered system was applied, it was working together as a whole having some influence on each other layer, though every layer offered varying degree of water vapor permeability. Water vapor permeability of layered system exactly followed the same trend as the shell layer, which is all vapor permeable water repellent fabrics as a single layer. The rate of water vapor transfer through a layered system is mainly related to the type of vapor permeable water repellent fabrics used for the shell layer.

Electron Tunneling and Electrochemical Currents through Interfacial Water Inside an STM Junction

  • Song, Moon-Bong;Jang, Jai-Man;Lee, Chi-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • 제23권1호
    • /
    • pp.71-74
    • /
    • 2002
  • The apparent barrier height for charge transfer through an interfacial water layer between a Pt/Ir tip and a gold surface has been measured using STM technique. The average thickness of the interfacial water layer inside an STM junction was controlled by the amount of moisture. A thin water layer on the surface was formed when relative humidity was in the range of 10 to 80%. In such a case, electron tunneling through the thin water layer became the majority of charge transfers. The value of the barrier height for the electron tunneling was determined to be 0.95 eV from the current vs. distance curve, which was independent of the tip-sample distance. On the other hand, the apparent barrier height for charge transfer showed a dependence on tip-sample distance in the bias range of 0.1-0.5 V at a relative humidity of approximately 96%. The non-exponentiality for current decay under these conditions has been explained in terms of electron tunneling and electrochemical processes. In addition, the plateau current was observed at a large tip-sample distance, which was caused by electrochemical processes and was dependent on the applied voltage.

Behaviors of Anisotropic Fluids in the Vicinity of a Wedge

  • Kim, Youn-J.
    • Journal of Mechanical Science and Technology
    • /
    • 제14권6호
    • /
    • pp.690-698
    • /
    • 2000
  • The laminar boundary layer flow and heat transfer of anisotropic fluids in the vicinity of a wedge have been examined with constant surface temperature. The similarity variables found by Falkner and Skan are employed to reduce the stream wise-dependence in the coupled nonlinear boundary layer equations. The numerical solutions are presented using the fourth-order Runge - Kutta method and the distribution of velocity, micro-rotation, shear and couple stresses and temperature across the boundary layer are plotted. These results are also compared with the corresponding flow problems for Newtonian fluid over wedges. It is found that for a constant wedge angle, the skin friction coefficient is lower for micropolar fluid, as compared to Newtonian fluid. For the case of the constant material parameter K, however, the magnitude of velocity for anisotropic fluid is greater than that of Newtonian fluid. The numerical results also show that for a constant wedge angle with a given Prandtl number, Pr = I, the effect of increasing values of K results in increasing thermal boundary layer thickness for anisotropic fluid, as compared with Newtonian fluid. For the case of the constant material parameter K, however, the heat transfer rate for anisotropic fluid is lower than that of Newtonian fluid.

  • PDF

UV 나노임프린트 공정에서의 수지 액적 증발 거동 분석 (Analysis of the Evaporation Behavior of Resin Droplets in UV-Nanoimprint Process)

  • 최두순;김기돈
    • 소성∙가공
    • /
    • 제18권3호
    • /
    • pp.268-273
    • /
    • 2009
  • Ultraviolet nanoimprint lithography (UV-NIL), which is performed at a low pressure and at room temperature, is known as a low cost method for the fabrication of nano-scale patterns. In the patterning process, maintaining the uniformity of the residual layer is critical as the pattern transfer of features to the substrate must include the timed etch of the residual layer prior to the etching of the transfer layer. In pursuit of a thin and uniform residual layer thickness, the initial volume and the position of each droplet both need to be optimized. However, the monomer mixtures of resin had a tendency to evaporate. The evaporation rate depends on not only time, but also the initial volume of the monomer droplet. In order to decide the initial volume of each droplet, the accurate prediction of evaporation behavior is required. In this study, the theoretical model of the evaporation behavior of resin droplets was developed and compared with the available experimental data in the literature. It is confirmed that the evaporation rate of a droplet is not proportional to the area of its free surface, but to the length of its contact line. Finally, the parameter of the developed theoretical model was calculated by curve fitting to decide the initial volume of resin droplets.

도공층의 공극성이 인쇄후 잉크의 잔류 거동에 미치는 영향 - 안료와 잉크의 효과 - (Investigation on Relationship Between Pore Structure of Coating Layer and Ink Residual Behavior - Focused on the Effect of Pigments and Inks -)

  • 김병수;정현채;박종열
    • 펄프종이기술
    • /
    • 제34권3호
    • /
    • pp.53-58
    • /
    • 2002
  • This paper was performed to investigate the effect of pore structure on ink residual behavior. To prepare different coating structures as substrates against inks, fine, medium and coarse calcium carbonate were used in the coating color. It is well known ink properties can affect to print qualities. After printing on the coated paper, ink layer can consider as third structure addition to paper and coating layer. To compare effect of ink properties on the surface structure and print qualities, several properties of ink were also adopted as raw material. Particle size of pigment effect on gloss evaluation of coated paper increased with calendering. It was shown that ink transfer rate increased as surface of the sample was smooth. The ink contained low viscosity resin evaluated more print gloss. Finer pigment particle size, smaller pore size and higher porosity. Pore volume of coated paper was slightly decreased with printing as the coating was prepared with the finest particle size. However, it founded that ink resin could not affect on pore volume and distribution of printed paper