Browse > Article
http://dx.doi.org/10.5012/bkcs.2002.23.1.071

Electron Tunneling and Electrochemical Currents through Interfacial Water Inside an STM Junction  

Song, Moon-Bong (Department of Advanced Materials Chemistry, Korea University)
Jang, Jai-Man (Department of Advanced Materials Chemistry, Korea University)
Lee, Chi-Woo (Department of Advanced Materials Chemistry, Korea University)
Publication Information
Abstract
The apparent barrier height for charge transfer through an interfacial water layer between a Pt/Ir tip and a gold surface has been measured using STM technique. The average thickness of the interfacial water layer inside an STM junction was controlled by the amount of moisture. A thin water layer on the surface was formed when relative humidity was in the range of 10 to 80%. In such a case, electron tunneling through the thin water layer became the majority of charge transfers. The value of the barrier height for the electron tunneling was determined to be 0.95 eV from the current vs. distance curve, which was independent of the tip-sample distance. On the other hand, the apparent barrier height for charge transfer showed a dependence on tip-sample distance in the bias range of 0.1-0.5 V at a relative humidity of approximately 96%. The non-exponentiality for current decay under these conditions has been explained in terms of electron tunneling and electrochemical processes. In addition, the plateau current was observed at a large tip-sample distance, which was caused by electrochemical processes and was dependent on the applied voltage.
Keywords
STM; Electron tunneling; Electrochemical current; Barrier height;
Citations & Related Records

Times Cited By Web Of Science : 7  (Related Records In Web of Science)
Times Cited By SCOPUS : 5
연도 인용수 순위
1 Hahn, J. R.; Hong, Y. A.; Kang, H. Appl. Phys. 1998, A66, S467   DOI   ScienceOn
2 Fan, F.-R. F.; Bard, A. J. Science 1995, 270, 1849   DOI   ScienceOn
3 Heim, M.; Eschrich, R.; Hillebrand, A.; Knapp, H. F.; Guckenberger, R.; Cevc, G. J. Vac. Sci. Technol. 1996, B42, 1498
4 Schmickler, W. Surf. Sci. 1995, 335, 416   DOI   ScienceOn
5 Song, M. B.; Jang, J. M.; Bae, S. E.; Lee, C. W. accepted for publication in Langmuir
6 Lang, N. D. Phys. Rev. 1987, B36, 8173   DOI   ScienceOn
7 Ahn, J. H.; Pyo, M. H. Bull. Korean Chem. Soc. 2000, 21, 644
8 Wiesendanger, R. Scanning Probe Microscopy and Spectroscopy, Methods and Applications; Cambridge: New York, 1994
9 Meepagala, S. C.; Real, F. Phys. Rev. 1994, B49, 10761   DOI   ScienceOn
10 Pan, J.; Jing, T. W.; Lindsay, S. M. J. Phys. Chem. 1994, 98, 4205   DOI   ScienceOn
11 Guckenberger, R.; Heim, M.; Cevc, G.; Knapp, H. F.; Weigrabe, W.; Hillebrand, A. Science 1994, 266, 1538   DOI
12 Vaught, A.; Jing, T. W.; Lindsay, S. M. Chem. Phys. Letts. 1995, 236, 306   DOI   ScienceOn
13 McCarley, R. L.; Hendricks, S. A.; Bard, A. J. J. Phys. Chem. 1992, 96,10089   DOI
14 Sass, J. K.; Gimzewski, J. K. J. Electroanal. Chem. 1991, 308, 333   DOI   ScienceOn
15 Mamin, H. J.; Ganz, E.; Abraham, D. W.; Thomson, R. E.; Clarke, J. Phys. Rev. 1986, B34, 9015   DOI   ScienceOn
16 Schuster, R.; Barth, J. V.; Wintterlin, J.; Behm, R. J.; Ertl, G. Ultramicroscopy 1992, 42-44, 533   DOI   ScienceOn
17 Biscarini, F.; Kenkre, V. M. Surf. Sci. 1999, 426, 336   DOI   ScienceOn
18 Olesen, L.; Laegsgaard, E.; Stensgaard, I.; Besenbacher, F.; Schiotz, J.; Stoltze, P.; Jacobsen, K. W.; Norskov, J. K. Phys. Rev. Letts. 1994, 72, 2251   DOI   ScienceOn
19 Hong, Y. A.; Hahn, J. R.; Kang, H. J. Chem. Phys. 1998, 108, 4367