• Title/Summary/Keyword: Transfer Layer

Search Result 1,530, Processing Time 0.033 seconds

The Effects of Surface Roughness on Wear-life of DLC Coating in Dry Sliding (모재의 표면 거칠기가 DLC 코팅의 마멸수명에 미치는 영향)

  • Lee Young-Ze;Shin Kyung-Seob;Cho Chung-Woo
    • Tribology and Lubricants
    • /
    • v.21 no.3
    • /
    • pp.130-135
    • /
    • 2005
  • Dry sliding wear resistance of DLC coated silicon disk with different surface roughness has been evaluated using a ball-on-disk sliding tester. It was found that the transfer layer formed on steel ball produced a low friction regime and the formation of transfer layer was more active with increasing the substrate surface roughness. Wear life of DLC coating was increased as increasing the real area of contact.

Mass transfer in the filtration membrane covering from macroscale, multiscale to nanoscale

  • Lin, Wei;Li, Jian;Zhang, Yongbin
    • Membrane and Water Treatment
    • /
    • v.13 no.4
    • /
    • pp.167-172
    • /
    • 2022
  • The analytical results are presented for the mass transfer in a cylindrical pore covering from the macroscale, multiscale to nanoscale owing to the variation of the inner diameter of the pore. When the thickness hbf of the physically adsorbed layer potentially fully formed on the pore wall is comparable to but less than the inner radius R0 of the pore, the multiscale flow occurs consisting of both the nanoscale non-continuum adsorbed layer flow and the macroscopic continuum liquid flow; When R0 ≤ hbf, the flow in the whole pore is essentially non-continuum; When R0 is far greater than hbf, the flow in the whole pore can be considered as macroscopic and continuum and the adsorbed layer effect is negligible.

Effect of Boundary Layer Generated on the fin surfaces of a Compact Heat Exchanger on the Heat Transfer and Pressure Drop Characteristics (컴팩트형 열교환기의 핀 표면에서 발생하는 경계층이 열교환기의 전열 및 압력강하 특성의 변화에 미치는 영향에 관한 수치해석적 연구)

  • KIM Chul-Ho;Jung Ji-Yong
    • Journal of computational fluids engineering
    • /
    • v.3 no.1
    • /
    • pp.82-88
    • /
    • 1998
  • As a par of a project related to the development of the design algorithm of a compact heat exchanger for the application of the electronic home appliances, the effect of the discreteness of the airflow boundary generated on the cooling fin surface on the heat transfer and pressure drop characteristics of the heat exchanger was studied numerically. In general, there are two critical design parameters seriously considered in the design of the heat exchanger; heat transfer rate(Q) and pressure drop coefficient(C/sub p/). Even though the higher heat transfer rate with lower pressure drop characteristics is required in a design of the heat exchanger, it is not an easy job to satisfy both conditions at the same time because these two parameters are phenomenally inversely proportional. To control the boundary layer thickness and its length along the streamline, the surface of the flat fin was modified to accelerate the heat transfer rate on the fin surface. To understand the effect of the discreted fin size(S/sub w/) and its location(S/sub h/) on the performance of the heat exchanger in the airflow field, the flat fin was modified as shown in Fig. 1. From this study, it was found that the smaller and more number of slits on the fin surface showed the higher energy diffusion rate. It means that the discreteness of the boundary layer is quite important on the heat transfer rate of the heat exchanger. On the other hand, if the fin surface configuration is very complex than needed, higher static pressure drop occurs than required in a system and it may be a reason of the induced aerodynamic noise in the heat exchanger.

  • PDF

Impedance Properties of Electroluminescent Device Containing Blended Polymer Single-Layer (고분자 블렌드를 이용한 EL 소자의 임피던스 특성)

  • 김주승;서부완;구할본;이경섭
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.332-335
    • /
    • 2000
  • We fabricated organic electroluminescent (EL) devices with single layer of poly(3-dodeoylthiophene) (P3DoDT) hlended with different amounts of poly(N-vinylcarbazole) (PVK) as a emitting layer. The molar ratio between P3DoDT and PVK changed with 1:0, 2:1 and 1:1. To improve the external quantum efficiency of EL devices, we applied insulating layer, LiF layer, between polymer emitting layer and Al electrode. All of the devices emit orange-red light and it's can be explained that the energy transfer occurs from PVK to P3DoDT. In the voltage-current and voltage-brightness characteristics of devices applied LiF layer, current and brightness increased with increasing applied voltage. The brightness of the device have a molar ratio 1:1 with LiF layer was about 10 times larger than that of the device without PVK at 6V. Electrical impedance properties of ITO/emitting layer/LiF/Al devices were investigated. In the Cole-Cole plots of impedance data, one semicircle was observed. Therefore, the equivalent circuit for the devices can be designed as a single parallel resistor and capacitor network with series resistor.

  • PDF

The numerical model for predicting frost layer growth (서리층 성장 예측을 위한 수치적 모델)

  • Lee, K.S.;Jhee, S.;Lee, T.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.2
    • /
    • pp.249-258
    • /
    • 1997
  • In this study, a numerical model for analyzing frost formation phenomena on a cold flat plate has been developed. Both regions of air flow and frost layer have been coupled to calculate the amount of the heat and mass transfer between air flow and frost layer. Experiments have been also conducted to validate the numerical model. The present numerical results show a good agreement with the experimental data. The present numerical model also provides some useful data such as the temperature distribution inside the frost layer which could not be obtained through the experiments.

  • PDF

A Simple Microwave Backscattering Model for Vegetation Canopies

  • Oh Yisok;Hong Jin-Young;Lee Sung-Hwa
    • Journal of electromagnetic engineering and science
    • /
    • v.5 no.4
    • /
    • pp.183-188
    • /
    • 2005
  • A simple microwave backscattering model for vegetation canopies on earth surfaces is developed in this study. A natural earth surface is modeled as a two-layer structure comprising a vegetation layer and a ground layer. This scattering model includes various scattering mechanisms up to the first-order multiple scattering( double-bounce scattering). Radar backscatter from ground surface has been modeled by the polarimetric semi-empirical model (PSEM), while the backscatter from the vegetation layer modeled by the vector radiative transfer model. The vegetation layer is modeled by random distribution of mixed scattering particles, such as leaves, branches and trunks. The number of input parameters has been minimized to simplify the scattering model. The computation results are compared with the experimental measurements, which were obtained by ground-based scatterometers and NASA/JPL air-borne synthetic aperture radar(SAR) system. It was found that the scattering model agrees well with the experimental data, even though the model used only ten input parameters.

Effect of Surface Modification of Donor Plate on the Fabrication of OLED Devices by LITI Process

  • Bae, Heung-Kwon;Kim, Jin-Hoo;Kwon, Hyeok-Yong;Lee, Yoon-Soo;Park, Lee-Soon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.784-786
    • /
    • 2009
  • Thermal transfer of emitting layer from the donor film to the substrates depends on the physical interaction between the donor film, the emitting layer, and the hole-transport layer (HTL). The interfacial adhesion between the donor film and the EML, the cohesive force of the EML, and the interfacial adhesion between the EML and the HIL have to be optimized to achieve good LITI pattern quality. It was found that surface pretreatment of the donor plate was important on the laser induced thermal transfer of the emitting layer onto the HIL layer of the OLED devices.

  • PDF

UV-nanoimprint Patterning Without Residual Layers Using UV-blocking Metal Layer (UV 차단 금속막을 이용한 잔류층이 없는 UV 나노 임프린트 패턴 형성)

  • Moon Kanghun;Shin Subum;Park In-Sung;Lee Heon;Cha Han Sun;Ahn Jinho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.4 s.37
    • /
    • pp.275-280
    • /
    • 2005
  • We propose a new approach to greatly simplify the fabrication of conventional nanoimprint lithography (NIL) by combined nanoimprint and photolithography (CNP). We introduce a hybrid mask mold (HMM) made from UV transparent material with a UV-blocking Cr metal layer placed on top of the mold protrusions. We used a negative tone photo resist (PR) with higher selectivity to substrate the CNP process instead of the UV curable monomer and thermal plastic polymer that has been commonly used in NIL. Self-assembled monolayer (SAM) on HMM plays a reliable role for pattern transfer when the HMM is separated from the transfer layer. Hydrophilic $SiO_2$ thin film was deposited on all parts of the HMM, which improved the formation of SAM. This $SiO_2$ film made a sub-10nm formation without any pattern damage. In the CNP technique with HMM, the 'residual layer' of the PR was chemically removed by the conventional developing process. Thus, it was possible to simplify the process by eliminating the dry etching process, which was essential in the conventional NIL method.

  • PDF

Improvement of external quantum efficiency of EL devices with PVK/P3DoDT blends using as a emitting layer (PVK/P3DoDT 블랜드를 발광층으로 사용한 EL 소자의 발광효율 향상에 관한 연구)

  • Kim, Ju-Seung;Seo, Bu-Wan;Gu, Hal-Bon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.04b
    • /
    • pp.96-99
    • /
    • 2000
  • We fabricated electroluminescent(EL) devices which have a blended single emitting layer containing poly(N-vinylcarbazole)[PVK] and poly(3-dodecylthiophene)[P3DoDT]. The molar ratio between P3DoDT and PVK changed with 1:0, 2:1 and 1:1. To improve the external quantum efficiency of EL devices, we applied insulating layer, LiF layer, between polymer emitting layer and Al electrode. All of the devices emit orange-red light and its can be explained that the energy transfer occurs from PVK to P3DoDT. In the voltage-current and voltage-light power characteristics of devices applied LiF layer, current and light power drastically increased with increasing applied voltage. In the consequence of the result, the external quantum efficiency of the devices that have a molar ratio 1:1 with LiF layer was 35 times larger than that of the device without LiF layer at 6V.

  • PDF

Luminescent characteristics of OLED doped with DCM2 and rubrene (Rubrene과 DCM2가 첨가된 적색 유기전계발광소자의 발광특성)

  • 박용규;성현호;김인회;조황신;양해석
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.939-942
    • /
    • 2001
  • We fabricated Red Organic light-emitting devices(OLED). The Basic Device Structure is ITO/hole transfer layer, TPD(50nm)/red emitting layer, Alq3 doped with DCM2 or DCM2:rubrene(xnm)/electorn transfer layer, Alq3(50-xnm)/LiF(0.8nm)/Al(8nm) . The thickness of emitting layer(xnm) changed 5, 10, 20nm. we demonstrate red emitting OLED with dependent on the thickness and concentrators of Alq3 layer doped with DCM2 or co-doped with DCM2:ruberene. The Emission color and Brightness are changed with doping or co-doping condition, dopant concentarton. In the case of rubrene:DCM2 co-doped layer structure, the red color Purity and device efficiency is improved. The CIE index of rubrene co-doped OLED is x=0.67, y=0.31. By co-doping the Alq3 layer with DCM2, rubrene, EL efficiency improved from 0.38cd/A to 0.44cd/A in comparison whit DCM2 doped Alq3 layer.

  • PDF