DOI QR코드

DOI QR Code

Mass transfer in the filtration membrane covering from macroscale, multiscale to nanoscale

  • Lin, Wei (School of Mechanics Technology, Wuxi Institute of Technology) ;
  • Li, Jian (College of Mechanical Engineering, Changzhou University) ;
  • Zhang, Yongbin (College of Mechanical Engineering, Changzhou University)
  • Received : 2021.03.13
  • Accepted : 2022.05.15
  • Published : 2022.07.25

Abstract

The analytical results are presented for the mass transfer in a cylindrical pore covering from the macroscale, multiscale to nanoscale owing to the variation of the inner diameter of the pore. When the thickness hbf of the physically adsorbed layer potentially fully formed on the pore wall is comparable to but less than the inner radius R0 of the pore, the multiscale flow occurs consisting of both the nanoscale non-continuum adsorbed layer flow and the macroscopic continuum liquid flow; When R0 ≤ hbf, the flow in the whole pore is essentially non-continuum; When R0 is far greater than hbf, the flow in the whole pore can be considered as macroscopic and continuum and the adsorbed layer effect is negligible.

Keywords

References

  1. Ariono, D., Aryanti, P.T.P., Wardani, A.K. and Wenten, I.G. (2018), "Fouling characteristics of humic substances on tight polysulfone-based ultrafiltration membrane", Membr. Water Treat., 9(5), 353-361. https://doi.org/10.12989/mwt.2018.9.5.353.
  2. Atkas, O. and Aluru, N.R. (2002), "A combined continuum/DSMC technique for multiscale analysis of microfluidic filters", J. Comput. Phys., 178(2), 342-372. https://doi.org/10.1006/jcph.2002.7030.
  3. Baker, L.A. and Bird, S.P. (2008), "Nanopores: A makeover for membranes", Nature Nanotech., 3, 73-74. https://doi.org/10.1038/nnano.2008.13.
  4. Borg, M.K., Lockerby, D.A. and Reese J. M. (2013), "A multiscale method for micro/nano flows of high aspect ratio", J. Comput. Phys., 233, 400-413. https://doi.org/10.1016/j.jcp.2012.09.009.
  5. Borg, M.K., Lockerby, D.A., Ritos, K. and Reese, J.M. (2018), "Multiscale simulation of water flow through laboratory-scale nanotube membranes", J. Membr. Sci., 567, 115-126. https://doi.org/10.1016/j.memsci.2018.08.049.
  6. Bottino, A., Capannelli, G., Comite, A., Ferrari, F. and Firpo, R. (2011), "Water purification from pesticides by spiral wound nanofiltration membrane", Membr. Water Treat., 2(1), 63-74. http://doi.org/10.12989/mwt.2011.2.1.063.
  7. Brown, C.E., Everett, D.H., Powell, A.V. and Thome, P.E. (1975), "Adsorption and structuring phenomena at the solid/liquid interface", Faraday Discus. Chem. Soc., 59, 97-108. https://doi.org/10.1039/DC9755900097.
  8. Elizabeth, E.M.O., Barbosa, C.C.R. and Afonso, J.C. (2012), "Selectivity and structural integrity of a nanofiltration membrane for treatment of liquid waste containing uranium", Membr. Water Treat., 3(4), 231-242. http://dx.doi.org/10.12989/mwt.2012.3.4.231.
  9. El-ghzizel,S., Jalte, H., Zeggar, H., Zait, M., Belhamidi, S., Tiyal, F., Hafsi, M., Taky, M. and Elmidaoui, A.(2019), "Autopsy of nanofiltration membrane of a decentralized demineralization plant", Membr. Water Treat., 10(4), 277-286. https://doi.org/0.12989/mwt.2019.10.4.277. https://doi.org/10.12989/mwt.2019.10.4.277
  10. Fissel, W.H., Dubnisheva, A., Eldridge, A.N., Fleischman, A.J., Zydney, A.L. and Roy, S. (2009), "High-performance silicon nanopore hemofiltration membranes", J. Membr. Sci., 326(1), 58- 63. http://doi.org/10.1016/j.memsci.2008.09.039.
  11. Jackson, E.A. and Hillmyer, M.A. (2010), "Nanoporous membranes derived from block copolymers: From drug delivery to water filtration", ACS Nano, 4(7), 3548-3553. http://doi.org/10.1021/nn1014006.
  12. Jiang, C.T. and Zhang, Y.B. (2022), "Direct matching between the flow factor approach model and molecular dynamics simulation for nanochannel flows", Sci. Rep., 12(1), 396. https://doi.org/10.1038/s41598-021-04391-5.
  13. Jin, Y., Choi, Y., Song, K.G., Kim, S. and Park, C. (2019), "Iron and manganese removal in direct anoxic nanofiltration for indirect potable reuse", Membr. Water Treat., 10(4), 299-305. https://doi.org/0.12989/mwt.2019.10.4.299. https://doi.org/10.12989/mwt.2019.10.4.299
  14. Khalili-Araghi, F., Gumbart, J., Wen, P., Sotomayor, M., Tajkhorshid, E. and Schulten, K. (2009), "Molecular dynamics simulations of membrane channels and transporters", Curr. Pin. Struct. Biol., 19(2), 128-137. https://doi.org/10.1016/j.sbi.2009.02.011.
  15. Liu, C. and Li, Z. (2011), "On the validity of the Navier-Stokes equations for nanoscale liquid flows: The role of channel size", AIP Adv., 1(3), 032108. https://doi.org/10.1063/1.3621858.
  16. Meyer, E., Overney, R.M., Dransfeld, K. and Gyalog, T. (1998), Friction and Rheology on the Nanometer Scale, World Scientific Press, New Jersey, U.S.A.
  17. Sanjay, R., Nagarajan, P., Sabyasachi, G., Subhadip, M., Suryasarathi, B. and Narayan, C.D. (2021), "Porous graphene-based membranes: Preparation and properties of a unique two-dimensional nanomaterial membrane for water purification", Sep. Purif. Rev., 50(3), 262-282. https://doi.org/10.1080/15422119.2020.1725048.
  18. Sommerer, T.J. and Kushner, M.J. (1992), "Numerical investigation of the kinetics and chemistry of rf glow discharge plasmas sustained in He, N2, O2, He/N2/O2, He/CF4/O2, and SiH4/NH3 using a Monte Carlo-fluid hybrid model", J. Appl. Phys., 71(4), 1654-1673. https://doi.org/10.1063/1.351196.
  19. Surwade, S.P., Smirnov, S.N., Vlassiouk, I.V., Unocic, R.R., Veith, G.M., Dai, S. and Mahurin, S.M. (2015), "Water desalination using nanoporous single-layer grapheme", Nature Nanotech., 10(5), 459-464. https://doi.org/10.1038/nnano.2015.37.
  20. Takaba, H., Onumata, Y. and Nakao, S. (2007), "Molecular simulation of pressure-driven fluid flow in nanoporous membranes", J. Chem. Phys., 127(5), 054703. https://doi.org/10.1063/1.2749236.
  21. Wang, J.B., Cheng, J.Y., Qing, Shi, T., Huang, Q. and He, X.W. (2013), "Membrane fouling mechanism and its control in the treatment of brackish water with reverse osmosis process", Adv. Mater. Res., 788, 268-274. https://doi.org/10.4028/www.scientific.net/amr.788.268.
  22. Yang, J.M., Jia, R.B., Wang, Z.J., Yang, X.L. and Pan, Z.B. (2012), "Study on production wastewater in water treatment plants by Submerged micro-filtration membrane", Adv. Mater. Res., 374-377, 982-986. https://doi.org/10.4028/www.scientific.net/amr.374-377.982.
  23. Yoon, S.H. (2018), "Direct membrane filtration of wastewater under very short hydraulic retention time", Adv. Environ. Res., 7(7), 39-52. http://doi.org/10.12989/aer.2018.7.1.039.
  24. Zhang, Y.B. (2004), "Modeling of molecularly thin film elastohydrodynamic lubrication", J. Balkan Trib. Assoc., 10, 394-421.
  25. Zhang, Y.B. (2014), "Lubrication analysis for a line contact covering from boundary lubrication to hydrodynamic lubrication: Part I- Micro contact results", J. Comput. Theor. Nanosci., 11(1), 62-70. https://doi.org/10.1166/jctn.2014.3318.
  26. Zhang, Y.B. (2015), "The flow factor approach model for the fluid flow in a nano channel", Int. J. Heat Mass Transf., 89, 733-742. https://doi.org/10.1016/j.ijheatmasstransfer.2015.05.092.
  27. Zhang, Y.B. (2016), "The flow equation for a nanoscale fluid flow", Int. J. Heat Mass Transf., 92, 1004-1008. https://doi.org/10.1016/j.ijheatmasstransfer.2015.09.008.
  28. Zhang, Y.B. (2017), "Transport in nanotube tree", Int. J. Heat Mass Transf., 114, 536-540. https://doi.org/10.1016/j.ijheatmasstransfer.2017.06.105.
  29. Zhang, Y.B. (2020), "Modeling of flow in a very small surface separation", Appl. Math. Mod., 82, 573-586. https://doi.org/10.1016/j.apm.2020.01.069.
  30. Zhang, Y.B. (2021), "Modeling of flow in a micro cylindrical tube with the adsorbed layer effect: Part I-Results for no interfacial slippage", Int. J Heat Mass Transf., submitted.