References
- Ariono, D., Aryanti, P.T.P., Wardani, A.K. and Wenten, I.G. (2018), "Fouling characteristics of humic substances on tight polysulfone-based ultrafiltration membrane", Membr. Water Treat., 9(5), 353-361. https://doi.org/10.12989/mwt.2018.9.5.353.
- Atkas, O. and Aluru, N.R. (2002), "A combined continuum/DSMC technique for multiscale analysis of microfluidic filters", J. Comput. Phys., 178(2), 342-372. https://doi.org/10.1006/jcph.2002.7030.
- Baker, L.A. and Bird, S.P. (2008), "Nanopores: A makeover for membranes", Nature Nanotech., 3, 73-74. https://doi.org/10.1038/nnano.2008.13.
- Borg, M.K., Lockerby, D.A. and Reese J. M. (2013), "A multiscale method for micro/nano flows of high aspect ratio", J. Comput. Phys., 233, 400-413. https://doi.org/10.1016/j.jcp.2012.09.009.
- Borg, M.K., Lockerby, D.A., Ritos, K. and Reese, J.M. (2018), "Multiscale simulation of water flow through laboratory-scale nanotube membranes", J. Membr. Sci., 567, 115-126. https://doi.org/10.1016/j.memsci.2018.08.049.
- Bottino, A., Capannelli, G., Comite, A., Ferrari, F. and Firpo, R. (2011), "Water purification from pesticides by spiral wound nanofiltration membrane", Membr. Water Treat., 2(1), 63-74. http://doi.org/10.12989/mwt.2011.2.1.063.
- Brown, C.E., Everett, D.H., Powell, A.V. and Thome, P.E. (1975), "Adsorption and structuring phenomena at the solid/liquid interface", Faraday Discus. Chem. Soc., 59, 97-108. https://doi.org/10.1039/DC9755900097.
- Elizabeth, E.M.O., Barbosa, C.C.R. and Afonso, J.C. (2012), "Selectivity and structural integrity of a nanofiltration membrane for treatment of liquid waste containing uranium", Membr. Water Treat., 3(4), 231-242. http://dx.doi.org/10.12989/mwt.2012.3.4.231.
- El-ghzizel,S., Jalte, H., Zeggar, H., Zait, M., Belhamidi, S., Tiyal, F., Hafsi, M., Taky, M. and Elmidaoui, A.(2019), "Autopsy of nanofiltration membrane of a decentralized demineralization plant", Membr. Water Treat., 10(4), 277-286. https://doi.org/0.12989/mwt.2019.10.4.277. https://doi.org/10.12989/mwt.2019.10.4.277
- Fissel, W.H., Dubnisheva, A., Eldridge, A.N., Fleischman, A.J., Zydney, A.L. and Roy, S. (2009), "High-performance silicon nanopore hemofiltration membranes", J. Membr. Sci., 326(1), 58- 63. http://doi.org/10.1016/j.memsci.2008.09.039.
- Jackson, E.A. and Hillmyer, M.A. (2010), "Nanoporous membranes derived from block copolymers: From drug delivery to water filtration", ACS Nano, 4(7), 3548-3553. http://doi.org/10.1021/nn1014006.
- Jiang, C.T. and Zhang, Y.B. (2022), "Direct matching between the flow factor approach model and molecular dynamics simulation for nanochannel flows", Sci. Rep., 12(1), 396. https://doi.org/10.1038/s41598-021-04391-5.
- Jin, Y., Choi, Y., Song, K.G., Kim, S. and Park, C. (2019), "Iron and manganese removal in direct anoxic nanofiltration for indirect potable reuse", Membr. Water Treat., 10(4), 299-305. https://doi.org/0.12989/mwt.2019.10.4.299. https://doi.org/10.12989/mwt.2019.10.4.299
- Khalili-Araghi, F., Gumbart, J., Wen, P., Sotomayor, M., Tajkhorshid, E. and Schulten, K. (2009), "Molecular dynamics simulations of membrane channels and transporters", Curr. Pin. Struct. Biol., 19(2), 128-137. https://doi.org/10.1016/j.sbi.2009.02.011.
- Liu, C. and Li, Z. (2011), "On the validity of the Navier-Stokes equations for nanoscale liquid flows: The role of channel size", AIP Adv., 1(3), 032108. https://doi.org/10.1063/1.3621858.
- Meyer, E., Overney, R.M., Dransfeld, K. and Gyalog, T. (1998), Friction and Rheology on the Nanometer Scale, World Scientific Press, New Jersey, U.S.A.
- Sanjay, R., Nagarajan, P., Sabyasachi, G., Subhadip, M., Suryasarathi, B. and Narayan, C.D. (2021), "Porous graphene-based membranes: Preparation and properties of a unique two-dimensional nanomaterial membrane for water purification", Sep. Purif. Rev., 50(3), 262-282. https://doi.org/10.1080/15422119.2020.1725048.
- Sommerer, T.J. and Kushner, M.J. (1992), "Numerical investigation of the kinetics and chemistry of rf glow discharge plasmas sustained in He, N2, O2, He/N2/O2, He/CF4/O2, and SiH4/NH3 using a Monte Carlo-fluid hybrid model", J. Appl. Phys., 71(4), 1654-1673. https://doi.org/10.1063/1.351196.
- Surwade, S.P., Smirnov, S.N., Vlassiouk, I.V., Unocic, R.R., Veith, G.M., Dai, S. and Mahurin, S.M. (2015), "Water desalination using nanoporous single-layer grapheme", Nature Nanotech., 10(5), 459-464. https://doi.org/10.1038/nnano.2015.37.
- Takaba, H., Onumata, Y. and Nakao, S. (2007), "Molecular simulation of pressure-driven fluid flow in nanoporous membranes", J. Chem. Phys., 127(5), 054703. https://doi.org/10.1063/1.2749236.
- Wang, J.B., Cheng, J.Y., Qing, Shi, T., Huang, Q. and He, X.W. (2013), "Membrane fouling mechanism and its control in the treatment of brackish water with reverse osmosis process", Adv. Mater. Res., 788, 268-274. https://doi.org/10.4028/www.scientific.net/amr.788.268.
- Yang, J.M., Jia, R.B., Wang, Z.J., Yang, X.L. and Pan, Z.B. (2012), "Study on production wastewater in water treatment plants by Submerged micro-filtration membrane", Adv. Mater. Res., 374-377, 982-986. https://doi.org/10.4028/www.scientific.net/amr.374-377.982.
- Yoon, S.H. (2018), "Direct membrane filtration of wastewater under very short hydraulic retention time", Adv. Environ. Res., 7(7), 39-52. http://doi.org/10.12989/aer.2018.7.1.039.
- Zhang, Y.B. (2004), "Modeling of molecularly thin film elastohydrodynamic lubrication", J. Balkan Trib. Assoc., 10, 394-421.
- Zhang, Y.B. (2014), "Lubrication analysis for a line contact covering from boundary lubrication to hydrodynamic lubrication: Part I- Micro contact results", J. Comput. Theor. Nanosci., 11(1), 62-70. https://doi.org/10.1166/jctn.2014.3318.
- Zhang, Y.B. (2015), "The flow factor approach model for the fluid flow in a nano channel", Int. J. Heat Mass Transf., 89, 733-742. https://doi.org/10.1016/j.ijheatmasstransfer.2015.05.092.
- Zhang, Y.B. (2016), "The flow equation for a nanoscale fluid flow", Int. J. Heat Mass Transf., 92, 1004-1008. https://doi.org/10.1016/j.ijheatmasstransfer.2015.09.008.
- Zhang, Y.B. (2017), "Transport in nanotube tree", Int. J. Heat Mass Transf., 114, 536-540. https://doi.org/10.1016/j.ijheatmasstransfer.2017.06.105.
- Zhang, Y.B. (2020), "Modeling of flow in a very small surface separation", Appl. Math. Mod., 82, 573-586. https://doi.org/10.1016/j.apm.2020.01.069.
- Zhang, Y.B. (2021), "Modeling of flow in a micro cylindrical tube with the adsorbed layer effect: Part I-Results for no interfacial slippage", Int. J Heat Mass Transf., submitted.