• 제목/요약/키워드: Transfer Influence Coefficient Method

검색결과 55건 처리시간 0.024초

다관절 보의 진동해석 알고리즘의 개발에 관한 연구 (On Development of Vibration Analysis Algorithm of Beam with Multi-Joints)

  • 문덕홍;여동준;최명수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제18권5호
    • /
    • pp.68-77
    • /
    • 1994
  • The authors apply the transfer influence coefficient method to the 3-dimensional vibration analysis of beam with multi-joints and formulate a general algorithm to analysis the longitudinal, flexural and torsional coupled free vibration. In this paper, the structure, which is mainly founded in the robot arms, cranes and so on, has some crooked parts, subsystems and joints but has no closed loop in this system. It is modeled as the beam of a distributed mass system with massless translational, rotational and torsional springs in each node, and joint elements of release or roll at which node the displacement vector is discontinuous. The superiorty of the present method to the transfer matrix method in the computation accuracy was confirmed by the numerical computation results. Moreover, we confirmed that boundary and intermediate conditions could ve controlled by varying the values o the spring constants.

  • PDF

다관절 보의 진동해석 알고리즘 개발에 관한 연구 (II) (On Development of Vibration Analysis Algorithm of Beam with Multi - Joints(II))

  • 문덕홍;최명수;홍숭수;강현석
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제21권3호
    • /
    • pp.256-266
    • /
    • 1997
  • The authors apply the transfer influence coefficient method to the 3. dimensional vibration analysis of beam with multi - joints and formulate a general algorithm to analyse the longitudinal, flexural and torsional coupled forced vibration. In this paper, a structure which is mainly found in the robot arms, cranes and so on, has some crooked parts, subsystems and joints, but has no closed loop in this system. It is modeled as the beam of a distributed mass system with massless translational, rotational and torsional springs in each node, and joint elements of release or roll at node which the displacement vector is discontinuous. The superiority of the present method to the transfer matrix method in the computation accuracy was confirmed from the numerical computation results. Moreover, we confirmed that boundary and intermediate conditions could be controlled by varying the values of the spring constants.

  • PDF

Development of Vibration Analysis Algorithm for Joined Conical-cylindrical Shell Structures using Transfer of Influence Coefficient

  • Yeo, Dong-Jun;Choi, Myung-Soo
    • 동력기계공학회지
    • /
    • 제17권1호
    • /
    • pp.50-57
    • /
    • 2013
  • This describes the formulation for the free vibration of joined conical-cylindrical shells with uniform thickness using the transfer of influence coefficient. This method was developed based on successive transmission of dynamic influence coefficients, which were defined as the relationships between the displacement and the force vectors at arbitrary nodal circles of the system. The two edges of the shell having arbitrary boundary conditions are supported by several elastic springs with meridional/axial, circumferential, radial and rotational stiffness, respectively. The governing equations of vibration of a conical shell, including a cylindrical shell, are written as a coupled set of first order differential equations by using the transfer matrix of the shell. Once the transfer matrix of a single component has been determined, the entire structure matrix is obtained by the product of each component matrix and the joining matrix. The natural frequencies and the modes of vibration were calculated numerically for joined conical-cylindrical shells. The validity of the present method is demonstrated through simple numerical examples, and through comparison with the results of previous researchers.

강체 원통을 중아에 갖는 2-보정면 탄성회전체 밸런싱 모델에서의 영향계수 (Influnce Coefficient of Two-Plane Flexible Rotor Balancing Model Having a Rigid Cylinder)

  • 전오성
    • 한국정밀공학회지
    • /
    • 제14권12호
    • /
    • pp.166-173
    • /
    • 1997
  • Influence coefficients on two-plane flexible rotor balancing model are derived by using the transfer matrix method. The model has a rigid uniform cylinder at mid-span of flexible shafts. Both faces of the rigid cylinder are used as the balancing planes. Calculated influence coefficients show that there exist the rotating speed ranges which are useless or insensitive for the balancing. Gyroscopic effect and damping are considered in the study and their effects are discussed.

  • PDF

강성계수의 조합 및 전달에 의한 격자형 구조물의 자유진동 해석 (Free Vibration Analysis of Lattice Type Structures by the Combination and Transfer of Stiffness Coefficient)

  • 문덕홍;최명수;강화중;강현석
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1997년도 춘계학술대회논문집; 경주코오롱호텔; 22-23 May 1997
    • /
    • pp.169-175
    • /
    • 1997
  • Recently it is increased by degrees to produce complex and large lattice structures such as bridge, tower, crane, and space structures. In general, in order to analyse these structures we have used finite element method(FEM). In this method, however, it is necessary to use a large amount of computer memory and to take long computation time. For overcoming this problem, the Authors have developed the transfer dynamic stiffness coefficient method(TDSCM) which consists on the concept of the substructure synthesis method and transfer influence coefficient method. In this paper, the new free vibration analysis method for large type lattice structure is formulated by the TDSCM. And the results obtained by TDSCM are compared with those obtained by FEM, transfer matrix method and experiment. And it is confirmed for TDSCM to be the numerical high accuracy and high speed structure analysis method.

  • PDF

끝이 잘린 원추형 셸의 진동해석 알고리즘의 개발 (Development of Vibrational Analysis Algorithm for Truncated Conical Shells)

  • 여동준
    • 동력기계공학회지
    • /
    • 제9권3호
    • /
    • pp.58-65
    • /
    • 2005
  • This paper deals with the free vibrations of truncated conical shell with uniform thickness by the transfer influence coefficient method. The classical thin shell theory based upon the $Fl\ddot{u}gge$ theory is assumed and the governing equations of a conical shell are written as a coupled set of first order differential equations using the transfer matrix. The Runge-Kutta-Gill integration and bisection method are used to solve the governing differential equations and to compute the eigenvalues respectively. The natural frequencies and corresponding mode shapes are calculated numerically for the truncated conical shell with any combination of boundary conditions at the edges. And all boundary conditions and the intermediate supports between conical shell and foundation could be treated only by adequately varying the values of the spring constants. Numerical results are compared with existing exact and numerical solutions of other methods.

  • PDF

히트파이프 성능예측 열전달계수 측정 (Measurement of The Thermal Transfer Coefficient Predicting Efficiency of The Heat Pipe)

  • 임수정;문종민;이광훈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2039-2042
    • /
    • 2008
  • Recently, Electronic & Electrical Products have problems how to reduce heat in trend reducing size and increasing speed. heat pipes worked by latent heats can solve problems for effective and quiet electronic applications. Heat Pipes have to be suitably designed for the external conditions due to showing optimum performance. it has influence on efficiency of heat pipes to the exterior structure changed by length, bending angle, diameter. Designing heat pipes has depended on experience from trial and error. this method wasted too many resources, but can't guarantee efficiency. to prevent those wastes, this study aims at making the thermal transfer coefficient predicting efficiency. In this study, the thermal transfer coefficient has been made from experimental results that used variables - lengths between heat source and radiation, bending angles, diameters of heat pipes. variables become non-dimensional in modeling process for making the coefficient.

  • PDF

탄성지대를 갖는 사각형 평판의 자유진동해석 (Free Vibration Analysis of Rectangular Plate with Elastic Supports - Formulation by the Transfer Infiuence Coefficient Method -)

  • 문덕홍;여동준
    • 수산해양기술연구
    • /
    • 제27권4호
    • /
    • pp.313-320
    • /
    • 1991
  • 본 연구에서는 전달영향계수법의 개념을 사각형 평판의 자유진동해석에 적용하여, 그 계산결과들을 전달매트릭스법 및 엄밀해 또는 Leissa 방법의 결과와 비교하여 그 유용성을 확인하였다. 전달영향계수법은 전달매트릭스법으로는 구하기 곤란한 고차의 고유진동수에 대해서도 정도좋게 구할 수 있으며, 계산속도의 면에서도 전달매트릭스법보다 우수함을 알 수 있었다. 또한, 전달영향계수법은 모든 경계조건 및 중간 경탄성 지지조건도 전단 및 회전 스프링정수 값의 조절만으로 간편하게 대응시킬수 있었다

  • PDF

온간 단조 공정에서의 열전달 계수 (Heat transfer coefficients for F.E analysis in warm forging processes)

  • 강종훈;고병호;제진수;강성수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.138-143
    • /
    • 2005
  • Finite Element analysis is widely applied to elevated temperature forging processes and shows a lot of information of plastic deformation such as strain, stress, defects, damages and temperature distributions. In highly elevated temperature deformation processes, temperature of material and tool have significant influence on tool life, deformation conditions and productivities. To predict temperature related properties accurately, adequate coefficients of not only contact heat transfer between material and dies but also convection heat transfer due to coolants are required. In most F.E analysis, too higher value of contact heat transfer coefficient is usually applied to get acceptable temperature distribution of tool. For contact heat transfer coefficients between die and workpiece, accurate values were evaluated with different pressure and lubricants conditions. But convection heat transfer coefficients have not been investigated for forging lubricants. In this research, convection heat transfer coefficients for cooling by emulsion lubricants are suggested by experiment and Inverse method. To verify acquired convection and contact heat transfer coefficients, tool temperature was measured for the comparison between measured tool temperature and analysis results. To increase analysis accuracy, repeated analysis scheme was applied till temperature of the tool got to be in the steady-state conditions. Verification of heat transfer coefficients both contact and convection heat transfer coefficients was proven with good accordance between measurement and analysis.

  • PDF