• 제목/요약/키워드: Transfer Floor

검색결과 204건 처리시간 0.027초

Influence of spacing between buildings on wind characteristics above rural and suburban areas

  • Kozmar, Hrvoje
    • Wind and Structures
    • /
    • 제11권5호
    • /
    • pp.413-426
    • /
    • 2008
  • A wind tunnel study has been carried out to determine the influence of spacing between buildings on wind characteristics above rural and suburban type of terrain. Experiments were performed for two types of buildings, three-floor family houses and five-floor apartment buildings. The atmospheric boundary layer (ABL) models were generated by means of the Counihan method using a castellated barrier wall, vortex generators and a fetch of roughness elements. A hot wire anemometry system was applied for measurement of mean velocity and velocity fluctuations. The mean velocity profiles are in good agreement with the power law for exponent values from ${\alpha}=0.15$ to ${\alpha}=0.24$, which is acceptable for the representation of the rural and suburban ABL, respectively. Effects of the spacing density among buildings on wind characteristics range from the ground up to $0.6{\delta}$. As the spacing becomes smaller, the mean flow is slowed down, whilst, simultaneously, the turbulence intensity and absolute values of the Reynolds stress increase due to the increased friction between the surface and the air flow. This results in a higher ventilation efficiency as the increased retardation of horizontal flow simultaneously accompanies an intensified vertical transfer of momentum.

욕실과 인접한 아파트 드레스룸의 결로 원인 분석 (An Experimental and Simulation Analysis of Condensation in the Walk-in Closet Attached to Apartment Bathroom)

  • 최영우;김선혜
    • KIEAE Journal
    • /
    • 제17권4호
    • /
    • pp.89-94
    • /
    • 2017
  • Purpose: Condensation in walk-in closets attached to apartment bathroom has been known as an emerging issue that may threat occupants' comfort and health. Despite a number of design guidelines and enforcements to prevent condensation, condensation issues may still occur depending on various cases and scenarios. We aim to identify what condensation scenarios may lead to walk-in closet condensation and/or worse the existing condensation issues. Method: First we choose an actual walk-in closet of an apartment that suffers from sporadic condensation and resulting mold and mildew. Then we observe its relative humidity and temperature after the bathroom is used, in which excessive vapor is thought to be transported to the walk-in closet. We analyze Temperature Difference Ratio - a domestic indicator of condensation occurrence, and dew point temperature to compare it with surface temperature using 2D heat transfer simulation upon various condensation scenarios. Result: TDR of the test walk-in closet turns out be OK despite mold and mildew actually occurring. Hot water pipe installed in the floor would greatly reduce condensation. If hot water pipe in the upper floor, however, is not used, or hot water pipe of the closet is turned off during swing seasons, it is expected that condensations may still occur.

난방공간에서 형상비에 따른 자연대류 방열기의 방열특성 (Heat Emission Characteristics on Natural Convection Radiator with Various Aspect Ratios in Heating Space)

  • 성순경
    • 한국산학기술학회논문지
    • /
    • 제11권1호
    • /
    • pp.37-42
    • /
    • 2010
  • 본 연구의 목적은 난방공간에서 자연대류 방열기를 통한 방출열량이 방열기의 형상에 따라 어떤 특성을 가지고 있는가 알기 위함이다. 이와 같은 전열특성을 알기 위하여 컴퓨터를 이용한 수치해석방법을 이용하였다. 방열기의 폭이 길고 높이가 낮은 경우 바닥 위 0.5 m에서 2.7 m까지의 온도차는 적음을 알 수 있다. 이는 다른 경우 보다 난방공간에 좋은 열환경 조건을 만들어 주는 것을 보여준다. 장래에 실험적인 방법을 통하여 본 컴퓨터 수치해석 결과의 타당성을 검증하고자 한다.

시트-인체 진동 모델링을 이용한 승차감 해석 (Ride Quality Analysis Using Seated Human Vibration Modeling)

  • 강주석
    • 한국철도학회논문집
    • /
    • 제18권3호
    • /
    • pp.194-202
    • /
    • 2015
  • 본 연구에서는 수직 진동에 노출된 승객의 승차감을 정량적으로 분석하기 위해 점탄성 특성을 가진 시트에 기댄 인체의 동적 모델링을 제시한다. 시트 위 인체의 운동을 기술하기 위해 문헌에서 찾은 5자유도계 다물체 동역학 모델이 이용되었다. 철도차량 시트에 사용되는 점탄성 특성은 비선형 강성 특성과 시간 지연을 표현하는 컨볼루션 적분으로 수식화된다. 바닥 가진에 대한 전달함수를 분석 결과 시트의 비선형 특성으로 인해 입력 가진의 크기에 따라 전달함수는 변하는 것으로 나타났다. 측정된 철도차량의 바닥 가진을 이용하여 실제적인 인체 진동 특성을 분석한다. 주파수 가중치 자승평균치 값을 계산하고 시트 설계 파라미터가 이 주파수 가중치 자승평균치에 미치는 영향을 제시한다.

AI 알고리즘을 활용한 스마트 수레 카트 서비스 (Smart Trolley Service Using AI Algorithm)

  • 조기동;김민준;봉진훤;조성진;문재현
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 추계학술발표대회
    • /
    • pp.815-817
    • /
    • 2022
  • This paper is about the development of an automatic stair climbing trolley for carrying loads without manpower. The design of tri-wheeled structure and center of mass enable the trolley to move on flat ground and also to ascend stairs by self-balancing. The overall design enables the trolley to avoid collision to walls when the trolley rotates on domestic landings. When the camera recognizes the stair, the sensor measures distance from the trolley to the stair. Then the trolley can move to align itself in the middle of the stair and it starts climbing. It can ascend to a specific floor based on the floor number entered by the user. As a result, the automatic stair climbing trolley is expected to help humans by protecting from accidents of dropping loads and saving their power. It is also expected to use for various purposes such as delivering packages, moving and carrying heavy loads in buildings without elevator.

임펠러 5축 NC가공을 위한 가공전략수립 지원시스템 (A 5-Axis NC Machining Strategy Support System for an Impeller)

  • 조민호;김동원;허은영;이찬기
    • 산업공학
    • /
    • 제21권4호
    • /
    • pp.411-417
    • /
    • 2008
  • An impeller is a type of high-speed rotor that is used to compress or transfer fluid under high-speed and pressure at high temperatures. The impeller is composed of an axial hub and several blades attached along the hub. The weight and shape of an impeller must be balanced, because their imbalances can cause noise and vibration, which can lead to the breakage of the impeller blades during operation. Thus, the hub and blades of an impeller are commonly machined in a 5-axis NC machine to obtain qualified surfaces. The impeller machining strategy or process plan can not be easily obtained due to the complex, overlapped and twisted shapes of impeller blades. Skillful machining process planners may generate appropriate machining strategies based on their experiences and floor data. However, in practice most shop floor data for the impeller machining is not well-structured such that it does not effectively provide a process planner with information for machining strategies and/or process plans. This paper reports the development of a case-based machining strategy support system (CBMS) that employs case-based reasoning to obtain the machining strategy of an impeller by using the existing machining strategies of the shop floor. The CBMS generates impeller machining strategies through a stepwise reasoning process considering the similarity features between the blade shapes and machining regions. A case study is provided to demonstrate that CBMS can generate useful machining strategies facilitating process planners. The developed system can simulate the tool paths of impeller machining and runs on the web.

An In-situ Correction Method of Position Error for an Autonomous Underwater Vehicle Surveying the Sea Floor

  • Lee, Pan-Mook;Jun, Bong-Huan;Park, Jin-Yeong;Shim, Hyung-Won;Kim, Jae-Soo;Jung, Hun-Sang;Yoon, Ji-Young
    • International Journal of Ocean System Engineering
    • /
    • 제1권2호
    • /
    • pp.60-67
    • /
    • 2011
  • This paper presents an in-situ correction method to compensate for the position error of an autonomous underwater vehicle (AUV) near the sea floor. AUVs generally have an inertial navigation system assisted with auxiliary navigational sensors. Since the inertial navigation system shows drift in position without the bottom reflection of a Doppler velocity log, external acoustic positioning systems, such as an ultra short baseline (USBL), are needed to set the position without surfacing the AUV. The main concept of the correction method is as follows: when the AUV arrives near the sea floor, the vehicle moves around horizontally in a circular mode, while the USBL transceiver installed on a surface vessel measures the AUV's position. After acquiring one data set, a least-square curve fitting method is adopted to find the center of the AUV's circular motion, which is transferred to the AUV via an acoustic telemetry modem (ATM). The proposed method is robust for the outlier of USBL, and it is independent of the time delay for the data transfer of the USBL position with the ATM. The proposed method also reduces the intrinsic position error of the USBL, and is applicable to the in-situ calibration as well as the initialization of the AUVs' position. Monte Carlo simulation was conducted to verify the effectiveness of the method.

잠열 축열-바이오 세라믹 온돌의 난방 특성(II) - 이론적 분석을 중심으로 - (Floor Heating Characteristics of Latent Heat Storage-Bioceramic Ondol(II) - Focused on Theoretical Analysis -)

  • 송현갑;유영선
    • 태양에너지
    • /
    • 제15권2호
    • /
    • pp.13-24
    • /
    • 1995
  • 국내의 주택난방은 온수 순환 파이프를 매설한 시멘트 온돌이 대부분을 차지하고 있으며, 현재와 같은 형태의 파이프 매설식 온돌은 열매자체의 축열성이 없기 때문에 빈번한 난방열의 공급으로 인하여 경제성과 쾌적도의 측면에서 불리하고, 또한 매설식이기 때문에 고장시의 수리가 불편하다는 문제점을 안고 있다. 따라서 축열형 조립식 형태의 온돌에 관한 연구가 최근에 이루어 지고 있으나, 실용화를 저해서는 보다 더 조직적이며 체계적인 연구가 이루어져야 할 것으로 판단된다. 현재 이용되고 있는 매설식 온수 순환 온돌의 단점을 개선하기 위하여 본 연구에서는 잠열축열재와 바이오세라믹을 이용한 조립식 온돌을 설계 제작하였으며, 온돌을 설치한 난방공간의 열전달 특성을 열평형 이론을 적용하여 해석하였다.

  • PDF

축소모형 실험을 통한 벽체의 열관류 측정 (Assessment on Thermal Transmission Property of Wall Through a Scaled Model Test)

  • 장윤성;김세종;심국보;이상준;한영중;박용건;여환명
    • Journal of the Korean Wood Science and Technology
    • /
    • 제43권6호
    • /
    • pp.884-889
    • /
    • 2015
  • 구조용 부재의 단열성능에 대한 적절한 평가와 냉난방에너지에 대한 합리적 제어는 건물의 에너지효율을 향상시키기 위하여 매우 중요하다. 한국의 일반적인 주택 난방방식은 바닥난방이다. 이와 같은 복사난방방식은 국내의 지정학적인 조건 또는 기후에 적합할 뿐만 아니라 온열감에 따른 정서적 안정감을 준다는 장점을 가진다. 국내의 바닥난방시스템을 적용하여, 목조공간과 콘크리트조 공간을 대상으로 축소모형을 제작하였다. 천장은 스티로폼으로 단열하고 벽과 바닥은 각각 합판과 콘크리트로 구성하였다. 바닥에는 난방필름을 부착하였다. 바닥난방에 따른 실내의 온도분포는 열전대로 측정하였고, 벽체 표면의 온도는 적외선 열화상 카메라로 측정하였다. 목조주택의 에너지효율 향상을 위한 데이터베이스 구축을 위해 축소모형의 단열성능을 평가하였다. 다양한 벽체와 바닥구성을 지닌 모형들의 단열성능평가 자료는 실제 주택의 열환경 분석시 참고기준으로 이용될 수 있을 것으로 기대된다.

청과물저장고의 구조특성 및 냉각부하량 산정에 관한 연구 (A Study on the Structural Characteristics and Estimation of Refrigerating. Load for the Fruit Storage)

  • 이석건;고재군
    • 한국농공학회지
    • /
    • 제18권1호
    • /
    • pp.4038-4051
    • /
    • 1976
  • This study was intended to provide the basic design creteria for the refrigerated storage, and to estimate the required optimum capacity of refrigerator for the different sizes and kinds of the existing fruit storage. The structural characteristics of the existing fruit storages in Pyungtaek-khun of Kyungki-do were surveyed. The average out-door air temperature during the expected storage life after harvesting, was obtained by analyzing the weather information. The heat transfer rates through the different models of storage walls were estimated. The refrigerating load required for different models of fruit storage was analyzed in the basis of out-door air temperature. The results obtained in this study are summarized as follows: 1. The fruit storages surveyed were constructed on-ground, under-ground and sub-ground type buildings. The majority of them being the on-ground buildings are mostly made of earth bricks with double walls. Rice hull was mostly used as the insulating materials for their walls and ceilings. About 42% of the buildings were with the horizontal ceiling, 22% with sloped ceiling, and about 36% without ceiling. About 60% of the storage buildings had floor without using insulated material. They were made of compacted earth. 2. There is no difference in heat transfer among six different types of double walls. The double wall, however, gives much less heat transfer than the single wall. Therefore, the double wall is recommended as the walls of the fruit storage on the point of heat transfer. Especially, in case of the single wall using concrete, the heat transfer is about five time of the double walls. It is evident that concrete is not proper wall material for the fruit storage without using special insulating material. 3. The heat transfer through the storage walls is in inverse proportion to the thickness of rice hull which is mostly used as the insulating material in the surveyed area. It is recommended that the thickness of rice hull used as the insulating material far storage wall is about 20cm in consideration of the decreasing rate of heat transfer and the available storage area. 4. The design refrigerating load for the on-ground storages having 20 pyung area is estimated in 4.07 to 4.16 ton refrigeration for double walls, and 5.23 to 6.97 ton refrigeration for single walls. During the long storage life, however, the average daily refrigerating load is ranged from 0.93 to 0.95 ton refrigeration for double walls, and from 1.15 to 1.47 ton refrigeration for single walls, respectively. 5. In case of single walls, 50.8 to 61.4 percent to total refrigerating load during the long storage life is caused by the heat transferred into the room space through walls, ceiling and floor. On the other hand, 39.1 to 40.7 percent is for the double walls. 6. The design and average daily refrigerating load increases in linear proportion to the size of storage area. As the size increases, the increasing rate of the refrigerating load is raised in proportion to the heat transfer rate of the wall. 7. The refrigerating load during the long storage life has close relationship to the out-door air temperature. The maximum refrigeration load is shown in later May, which is amounted to about 50 percent to the design refrigerating load. 8. It is noted that when the wall material having high heat transfer rate, such as the single wall made of concrete, is used, heating facilities are required for the period of later December to early February.

  • PDF