DOI QR코드

DOI QR Code

Influence of spacing between buildings on wind characteristics above rural and suburban areas

  • Kozmar, Hrvoje (Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Department of Civil Engineering and Geological Sciences, University of Notre Dame)
  • Received : 2007.12.06
  • Accepted : 2008.08.08
  • Published : 2008.10.25

Abstract

A wind tunnel study has been carried out to determine the influence of spacing between buildings on wind characteristics above rural and suburban type of terrain. Experiments were performed for two types of buildings, three-floor family houses and five-floor apartment buildings. The atmospheric boundary layer (ABL) models were generated by means of the Counihan method using a castellated barrier wall, vortex generators and a fetch of roughness elements. A hot wire anemometry system was applied for measurement of mean velocity and velocity fluctuations. The mean velocity profiles are in good agreement with the power law for exponent values from ${\alpha}=0.15$ to ${\alpha}=0.24$, which is acceptable for the representation of the rural and suburban ABL, respectively. Effects of the spacing density among buildings on wind characteristics range from the ground up to $0.6{\delta}$. As the spacing becomes smaller, the mean flow is slowed down, whilst, simultaneously, the turbulence intensity and absolute values of the Reynolds stress increase due to the increased friction between the surface and the air flow. This results in a higher ventilation efficiency as the increased retardation of horizontal flow simultaneously accompanies an intensified vertical transfer of momentum.

Keywords

References

  1. Balendra, T., Shah, D.A., Tey, K.L., Kong, S.K. (2002), "Evaluation of flow characteristics in the NUS-HDB Wind Tunnel", J. Wind. Eng. Ind. Aerod., 90, 675-688. https://doi.org/10.1016/S0167-6105(01)00223-9
  2. Barlow, J.F. and Belcher, S.E. (2002), "A wind tunnel model for quantifying fluxes in the urban boundary layer", Bound-Lay Meteorol., 104, 131-150. https://doi.org/10.1023/A:1015555613672
  3. Becker, S., Lienhart, H. and Durst, F. (2002), "Flow around three-dimensional obstacles in boundary layers", J. Wind. Eng. Ind. Aerod., 90, 265-279. https://doi.org/10.1016/S0167-6105(01)00209-4
  4. Castro, I.P., Cheng, H. and Reynolds, R. (2006), "Turbulence over urban-type roughness: deductions from windtunnel measurements", Bound-Lay Meteorol., 118, 109-131. https://doi.org/10.1007/s10546-005-5747-7
  5. Cheng, H. and Castro, I.P. (2002), "Near wall flow over urban-like roughness", Bound-Lay Meteorol., 104, 229-259. https://doi.org/10.1023/A:1016060103448
  6. Clarke, C.F. (1982), "An experimental study of turbulence in an urban environment", US E.P.A. Technical Report, EPA 600 S3-82-062.
  7. Clauser, F.H. (1954), "Turbulent boundary layers in adverse pressure gradients", J. Aeronaut. Sci., 21, 91-108. https://doi.org/10.2514/8.2938
  8. Coceal, O. and Belcher, S.E. (2005), "Mean winds through an inhomogeneous urban canopy", Bound-Lay Meteorol., 115, 47-68. https://doi.org/10.1007/s10546-004-1591-4
  9. Counihan, J. (1969a), "A method of simulating a neutral atmospheric boundary layer in a wind tunnel", AGARD Conference Proceedings, 43.
  10. Counihan, J. (1969b), "An improved method of simulating an atmospheric boundary layer in a wind tunnel", Atmos. Environ., 3, 197-214. https://doi.org/10.1016/0004-6981(69)90008-0
  11. Counihan, J. (1971), "Wind tunnel determination of the roughness length as a function of the fetch and the roughness density of three-dimensional roughness elements", Atmos. Environ., 5, 637-642. https://doi.org/10.1016/0004-6981(71)90120-X
  12. Counihan, J. (1973), "Simulation of an adiabatic urban boundary layer in a wind tunnel", Atmos. Environ., 7, 673-689. https://doi.org/10.1016/0004-6981(73)90150-9
  13. Counihan, J. (1975), "Adiabatic atmospheric boundary layers: a review and analysis of data from the period 1880-1972", Atmos. Environ., 9, 871-905. https://doi.org/10.1016/0004-6981(75)90088-8
  14. Crandell, J.H., Farkas, W., Lyons, J.M. and Freeborne, W. (2000), "Near-ground wind and its characterization for engineering application", Wind Struct., An Int. J., 3, 143-158. https://doi.org/10.12989/was.2000.3.3.143
  15. Dvorak, F.A. (1969), "Calculation of turbulent boundary layers on rough surfaces in pressure gradient", AIAA J., 7, 1752-1759. https://doi.org/10.2514/3.5386
  16. ESDU (1985), "Characteristics of wind speed in the lower layers of the atmosphere near the ground. Part II: single point data for strong winds (neutral atmosphere)", Engineering Sciences Data Unit 85020.
  17. Flack, K.A., Schultz, M.P. and Shapiro, T.A. (2005), "Experimental support for Townsend's Reynolds number similarity hypothesis on rough walls", Phys. Fluids., 17, 035102. https://doi.org/10.1063/1.1843135
  18. Gartshore, I.S. and De Croos, K.A. (1977), "Roughness element geometry required for wind tunnel simulations of the atmospheric wind", J. Fluids Eng., 9, 480-485.
  19. Gong, W., Taylor, P.A. and Dornbrack, A. (1996), "Turbulent boundary-layer flow over fixed aerodynamically rough two-dimensional sinusoidal waves", J. Fluid Mech., 312, 1-37. https://doi.org/10.1017/S0022112096001905
  20. Hellman, G. (1916), "uber die Bewegung der Luft in den untersten Schichten der Atmosphare", Meteorol. Z., 34, 273.
  21. Hoxey, R.P., Richards, P.J. and Short, J.L. (2002), "A 6m cube in an atmospheric boundary layer flow. Part I. Full-scale and wind-tunnel results", Wind Struct., An Int. J., 5, 165-176. https://doi.org/10.12989/was.2002.5.2_3_4.165
  22. Hucho, W-H. (2002), "Aerodynamik der stumpfen Korper", Vieweg & Sohn, Wiesbaden.
  23. Jia, Y., Sill, B.L. and Reinhold, T.A. (1998), "Effects of surface roughness element spacing on boundary-layer velocity profile parameters", J. Wind. Eng. Ind. Aerod., 73, 215-230. https://doi.org/10.1016/S0167-6105(97)00289-4
  24. Kastner-Klein, P. and Rotach, M. (2004), "Mean flow and turbulence characteristics in an urban roughness sublayer", Bound-Lay Meteorol., 111, 55-84. https://doi.org/10.1023/B:BOUN.0000010994.32240.b1
  25. Kozmar, H. (2000), "Modelling the atmospheric boundary layer in the wind tunnel (in Croatian)", Master Thesis, Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb.
  26. Kozmar, H. (2005), "Scale effects on the structure of the atmospheric boundary layer model (in Croatian)", Ph.D. Thesis, University of Zagreb.
  27. Kozmar, H., Dzijan, I. and Savar, M. (2005), "Uniformity of atmospheric boundary layer model in the wind tunnel (in Croatian)", Strojarstvo, 47, 157-167.
  28. Krogstad, P-A. and Antonia, R.A. (1999), "Surface roughness effects in turbulent boundary layers", Exp. Fluids., 27, 450-460. https://doi.org/10.1007/s003480050370
  29. Lettau, H. (1969), "Note on aerodynamic roughness-parameter estimation on the basis of roughness-element description", J. Appl. Meteorol., 8, 828-832. https://doi.org/10.1175/1520-0450(1969)008<0828:NOARPE>2.0.CO;2
  30. Macdonald, R.W. (2000), "Modelling the mean velocity profile in the urban canopy layer", Bound-Lay Meteorol., 97, 25-45. https://doi.org/10.1023/A:1002785830512
  31. Minvielle, F., Marticorena, B., Gillette, D.A., Lawson, R.E., Thompson, R. and Bergametti, G. (2003), "Relationship between the aerodynamic roughness length and the roughness density in cases of low roughness density", Environ. Fluid. Mech., 3, 249-267. https://doi.org/10.1023/A:1022830119554
  32. Pernpeintner, A., Schnabel, P., Schuler, A. and Theurer, W. (1995), "Appendix 17: Qualifizierungsversuch", WTG-Merkblatt uber Windkanalversuche in der Gebaudeaerodynamik, in E. J. Plate (ed.), WTG-Berichte Nr. 3, Windtechnologische Gesellschaft WTG e.V.
  33. Perry, A.E. and Li, J.D. (1990), "Experimental support for the attached eddy hypothesis in zero pressure-gradient turbulent boundary layers", J. Fluid. Mech., 218, 405-438. https://doi.org/10.1017/S0022112090001057
  34. Petersen, R.L. (1997), "A wind tunnel evaluation of methods for estimating surface roughness length at industrial facilities", Atmos. Environ., 31, 45-57. https://doi.org/10.1016/S1352-2310(96)00154-9
  35. Plate, E.J. (1982), "Wind tunnel modelling of wind effects in engineering", Engineering Meteorology (Elsevier, Amsterdam).
  36. Plate, E.J. (1995), "Urban Climates and Urban Climate Modelling: An Introduction", in J. E. Cermak, A. D. Davenport, E. J. Plate, and D. X. Viegas (eds.), Wind Climate in Cities, Kluwer Academic Publishers, Dordrecht, pp. 23-39.
  37. Rafailidis, S. (1997), "Influence of building areal density and roof shape on the wind characteristics above a town", Bound-Lay Meteorol., 85, 255-271. https://doi.org/10.1023/A:1000426316328
  38. Rotach, M.W. (1993), "Turbulence close to a rough urban surface, Part II: Variances and gradients", Bound-Lay Meteorol., 66, 75-92. https://doi.org/10.1007/BF00705460
  39. Schlichting, H., Gersten, K. (2000), Boundary Layer Theory, Springer, 8th edition.
  40. Sockel, H. (1984), "Aerodynamics of buildings (in German)", Vieweg & Sohn.
  41. Stathopoulos, T. and Surry, D. (1983), "Scale effects in wind tunnel testing of low buildings", J. Wind. Eng. Ind. Aerod., 13, 313-326. https://doi.org/10.1016/0167-6105(83)90152-6
  42. Sterling, M., Baker, C.J., Quinn, A.D. and Hoxey, R.P. (2005), "Pressure and velocity fluctuations in the atmospheric boundary layer", Wind Struct., An Int. J., 8, 13-34. https://doi.org/10.12989/was.2005.8.1.013
  43. Theurer, W. (1993), "Ausbreitung bodennaher Emissionen in komplexen Bebauungen", Dissertation, Institut fur Hydrologie und Wasserwirtschaft, Universitat Karlsruhe, Germany.
  44. Thuillier, R.H. and Lappe, U.O. (1964), "Wind and temperature profile characteristics from observations on a 1400 ft tower", J. Appl. Meteorol., 3, 299-306. https://doi.org/10.1175/1520-0450(1964)003<0299:WATPCF>2.0.CO;2
  45. Tieleman, H.W. (1990), "Wind tunnel simulation of the turbulence in the surface layer", J. Wind. Eng. Ind. Aerod., 36, 1309-1318. https://doi.org/10.1016/0167-6105(90)90127-X
  46. Xian, X., Tao, W., Qingwei, S. and Weimin, Z. (2002), "Field and wind-tunnel studies of aerodynamic roughness length", Bound-Lay Meteorol., 104, 151-163. https://doi.org/10.1023/A:1015527725443

Cited by

  1. Improved Experimental Simulation of Wind Characteristics around Tall Buildings vol.25, pp.4, 2012, https://doi.org/10.1061/(ASCE)AS.1943-5525.0000167
  2. Physical modeling of complex airflows developing above rural terrains vol.12, pp.3, 2012, https://doi.org/10.1007/s10652-011-9224-1
  3. Computational modeling of the atmospheric boundary layer using various two-equation turbulence models vol.19, pp.6, 2014, https://doi.org/10.12989/was.2014.19.6.687
  4. Flow and Turbulence Control in a Boundary Layer Wind Tunnel Using Passive Hardware Devices vol.41, pp.6, 2017, https://doi.org/10.1007/s40799-017-0196-z
  5. An alternative approach to experimental simulation of wind characteristics in urban environments vol.4, 2011, https://doi.org/10.1016/j.proenv.2011.03.006
  6. Truncated vortex generators for part-depth wind-tunnel simulations of the atmospheric boundary layer flow vol.99, pp.2-3, 2011, https://doi.org/10.1016/j.jweia.2010.11.001
  7. Designing laboratory wind simulations using artificial neural networks vol.120, pp.3-4, 2015, https://doi.org/10.1007/s00704-014-1201-4
  8. Steady RANS model of the homogeneous atmospheric boundary layer vol.173, 2018, https://doi.org/10.1016/j.jweia.2017.12.006
  9. Scale effects in wind tunnel modeling of an urban atmospheric boundary layer vol.100, pp.1-2, 2010, https://doi.org/10.1007/s00704-009-0156-3
  10. Characteristics of natural wind simulations in the TUM boundary layer wind tunnel vol.106, pp.1-2, 2011, https://doi.org/10.1007/s00704-011-0417-9
  11. Wind-tunnel simulations of the suburban ABL and comparison with international standards vol.14, pp.1, 2008, https://doi.org/10.12989/was.2011.14.1.015