• 제목/요약/키워드: Transfer Distance

검색결과 889건 처리시간 0.028초

한강수계 광역상수도 원수관의 지열 영향 조사 (Geothermal Effects on the Underground Water Conveyance Pipe System from Han River)

  • 조용;박진훈;박태진;김영준
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.171.2-171.2
    • /
    • 2010
  • Geothermal effects on the underground water conveyance pipe system have been investigated through the multiregional water supply system from Paldang water intake station. To make an investigation of raw water thermal energy, temperature sensors are installed the surface of the pipes of metropolitan area water supply system. In 2009 winter and early spring seasons, the monthly averaged temperatures at Paldang 2 intake stations are $1.94^{\circ}C$ in February, $4.96^{\circ}C$ in March, and $10.56^{\circ}C$ in April. After the transfer in 26.0 km distance of tunnel and buried pipe, the raw water temperatures are raised to $3.13^{\circ}C$, $6.04^{\circ}C$, and $11.39^{\circ}C$ respectively. As the temperature difference between the raw water and the air reduces, the temperature increasement is reduced by $1.19^{\circ}C$ in Feb., $1.08^{\circ}C$ in Mar., and $0.83^{\circ}C$ in Apr. Since the flowrate is over 1,150,000 $m^3$/day, it is estimated that the water exchanges a huge amount of heat over 1.0 Tcal a day with the ground.

  • PDF

Optimization of a radiator for a MPFL system in a GEO satellite

  • Afshari, Behzad Mohasel;Abedi, Mohsen;Shahryari, Mehran
    • Advances in aircraft and spacecraft science
    • /
    • 제4권6호
    • /
    • pp.701-709
    • /
    • 2017
  • One of the components that used in the satellite thermal control subsystem is the Mechanically Pumped Fluid Loop (MPFL) system; this system mostly used in geosynchronous orbit (GEO) satellites, and can transfer heat from a hot point to a cold point using the fluid which circulated in a closed loop. Heat radiates to the deep space at the cold plate to cool down the fluid temperature. In this research, the radiative heatexchanger (RHX) for a MPFL system is optimized. The genetic algorithm has been used for minimizing the total mass and pressure drop by considering a constant transferred heat rate at the heat exchanger. The optimization has been done in two cases. In case I, two parameters are considered as a goal function, so optimization is performed using NSGA-II method. Results of optimization are shown in the pareto diagram. In case II, the diameter of pipe is considered constant, so the optimized value for distances of the parallel pipes is obtained by using the genetic algorithm, in which the system has the least total mass. Results show that in the RHX, by increasing the pipe diameter, pressure drop decreases and total mass increases. Also by considering a constant value for pipe diameter, an optimum distance between pipes and pipe length are obtained in which the system has a minimum mass.

시험자료 획득을 위한 영상 송수신 시스템 구현 (Implementation of Video Transmitting and Receiving System for Acquisition of Test Data)

  • 류상규
    • 한국군사과학기술학회지
    • /
    • 제20권5호
    • /
    • pp.681-687
    • /
    • 2017
  • This paper presents about an implementation of Video Transmitting and Receiving System(VTRS) for acquiring test data. The VTRS consists of two parts. The first is Transmitter Unit(TU) that is installed on a missile to acquire various kinds of data and transmit the data to the ground through RF signals. The second is Receiver Unit(RU) that receives the transmitted RF signals and reconstruct those to the original data. To gather a high speed data reliably and securely on the ground, the TU is designed by considering data transfer scheme, data compression, modulation method, encryption technic, link budget, and antenna radiation pattern. Further, a placement method of multiple receiving stations is suggested. The VTRS has been tested on a field to check the link margins and maximum receiving distance in a real environment. Finally, the VTRS is applied to a missile flight test and gathered high speed data reliably.

드레인-소스 전극 간극의 변화에 따른 Gas Sensor의 열에너지 확산 해석 (Heat Energy Diffusion Analysis in the Gas Sensor Body with the Variation of Drain-Source Electrode Distance)

  • 장경욱
    • 한국전기전자재료학회논문지
    • /
    • 제30권9호
    • /
    • pp.589-595
    • /
    • 2017
  • MOS-FET structured gas sensors were manufactured using MWCNTs for application as NOx gas sensors. As the gas sensors need to be heated to facilitate desorption of the gas molecules, heat dispersion plays a key role in boosting the degree of uniformity of molecular desorption. We report the desorption of gas molecules from the sensor at $150^{\circ}C$ for different sensor electrode gaps (30, 60, and $90{\mu}m$). The COMSOL analysis program was used to verify the process of heat dispersion. For heat analysis, structure of FET gas sensor modeling was proceeded. In addition, a property value of the material was used for two-dimensional modeling. To ascertain the degree of heat dispersion by FEM, the governing equations were presented as partial differential equations. The heat analysis revealed that although a large electrode gap is advantageous for effective gas adsorption, consideration of the heat dispersion gradient indicated that the optimal electrode gap for the sensor is $60{\mu}m$.

Kinematic properties of the Ursa Major Cluster

  • Kim, YoungKwang;Lee, Young Sun;Beers, Timothy C.
    • 천문학회보
    • /
    • 제40권2호
    • /
    • pp.30.3-31
    • /
    • 2015
  • We present a kinematic analysis of 172 likely member galaxies of the Ursa Major Cluster. In order to understand the dynamical state of the cluster, we investigate the correlation of the cluster morphology with rotation, the velocity dispersion profile, and the rotation amplitude parallel to the global rotation direction. Both the minor axis and the rotation are very well-aligned with the global rotation axis in the outer region at half radius (> 0.5 $R_{max}$), but not in the inner region. The cluster exhibits low velocity dispersion and rotation amplitude profiles in the inner region, but higher in the outer. Both profiles exhibit outwardly increasing trends, suggesting an inside-out transfer of angular momentum of dark matter via violent relaxation, as revealed by a recent off-axis major-merging simulation. From Dressler-Schectman plots in the plane of galactic positions, and velocity versus position angle of galaxy, we are able to divide the Ursa Major Cluster into two substructures: Ursa Major South (UMS) and Ursa Major North (UMN). We derive a mass of $3.2{\times}10^{14}M_{\odot}$ for the cluster through the two-body analysis by the timing argument with the distance information (37 for UMN and 36 for UMS) and the spin parameter of ${\lambda}=0.049$. The two substructures appear to have passed each other 4.4 Gyr ago and are moving away to the maximum separation.

  • PDF

스월이 있는 3차원 모델 연소기 내의 연소특성 (Prediction of Combustion Characteristics in a 3D Model Combustor with Swirling Flow)

  • 김만영
    • 대한기계학회논문집B
    • /
    • 제27권1호
    • /
    • pp.95-104
    • /
    • 2003
  • The objective of this work is to investigate the turbulent reacting flow in a three dimensional combustor with emphasis on thermal NO emission through a numerical simulation. Flow field is analyzed using the SIMPLE method which is known as stable as well as accurate in the combustion modeling, and the finite volume method is adopted in solving the radiative transfer equation. In this work, the thermal characteristics and NO emission in a three dimensional combustor by changing parameters such as equivalence ratio and inlet swirl angle have investigated. As the equivalence ratio increases, which means that more fuel is supplied due to a larger inlet fuel velocity, the flame temperature increases and the location of maximum temperature and thermal NO has moved towards downstream. In the mean while, the existence of inlet swirl velocity makes the fuel and combustion air more completely mixed and burnt in short distance. Therefore, the locations of the maximum reaction rate, temperature and thermal NO were shifted to forward direction compared with the case of no swirl.

층류화염전파중의 연소실 벽면으로의 열손실 (Heat Loss to Combustion Chamber Wall During Laminar Flame Propagation)

  • 이상준;한동호;김문헌;이종태;이성열
    • 대한기계학회논문집
    • /
    • 제16권7호
    • /
    • pp.1398-1407
    • /
    • 1992
  • 본 연구에서는 정적연소기를 대상으로 하여 화염전파중의 열손실을 연소실내 의 압력 및 슐리렌 촬영한 화염사진에 의해 구한 발생열로부터 추정하는 방법을 제시 하고, 연소실 벽면의 순간온도를 직접 측정함으로써 상기방법에 의한 열손실 추정법의 타당성을 입증하였다. 그리고 이 열손실과 기연가스가 연소실 벽면에 접하는 열전달 면적과의 관계를 해석하므로서, 추후 열손실을 고려한 연소실 형상 설계에 있어서의 기초자료를 제시하고자 하였다.

DNA Marker를 이용한 한국 재래닭의 유전특성 분석 (Analysis of Genetic Characteristics of Korean Native Chicken Using DNA Marker)

  • 이학교;이성진;황규춘;정일정;박용호;손시환;신영수;오봉국;한재용
    • 한국가금학회지
    • /
    • 제23권4호
    • /
    • pp.177-183
    • /
    • 1996
  • This study was conducted to analyze genetic characteristics of Korean Native Chicken three lines classified on the basis of the feather color and appearance (Red, Yellow, and Black) using DNA fingerprinting method. To estimate the genetic relatedness among breeds and similarities within breeds, we collected blood samples from Korean Native Chicken (KNC), Rhode Island Red (RIR), White Leghorn (WL), and Cornish(CN) and obtained genomic DNA from the blood of 10 individuals randomly selected within the breeds and lines. The genomic DNA samples were digested with restriction enzymes (Hinf J, Hae Ill) and hybridized with various probes (Jeffreys' probes 33.15, 33.6 and M13) after Southern transfer. Genetic similarities within breeds were characterized by band sharing (BS) value, estimated by the DFP band pattern between the pair of lanes. BS values within WL, RIR, and KNC were 0.82, 0.70 and 0.56, respectively. Relative genetic diversity (BS value) of KNC was higher than those two breeds (WL, RIR). Estimation of genetic similarity between KNC lines and control breed (RIR) was 0.32, whereas similarity within KNC lines (6 groups) was 0.50. In this analysis, KNC was showed to have a highly genetic diver-sity at the DNA level, and to be closer in genetic distance to RIR (0.67) than any other breeds.

  • PDF

열구동형 폴리실리콘 마이크로 액츄에이터의 제작 및 특성분석 (Fabrication of Thermally-Driven Polysilicon Microactuator and Its Characterization)

  • Lee, J.H.;Lee, C.S.;Yoo, H.J.
    • 한국정밀공학회지
    • /
    • 제14권12호
    • /
    • pp.153-159
    • /
    • 1997
  • A thermally-driven polysilicon microactuator has been fabricated using surface micromachining techniques. It consists of P-doped polysilicon as a structural layer and TEOS(tetraethylorthosilicate) oxide as a sacrificial layer. The polysilicon was annealed for the relaxation of residual stress which is the main cause to its deformation such as bending and buckling. And newly developed HF GPE(gas-phase etching) process was also employed to eliminate the troublesome stiction problem using anhydrous HF gas and CH$_{3}$OH vapor, and successfully fabricated the microactuators. The actuation is incurred by the thermal expansion due to the current flow in the active polysilicon cantilever, which motion is amplified by lever mechanism. The moving distance of polysilicon microactuator was experimentally conformed as large as 21 .mu. m at the input voltage level of 10V and 50Hz square wave. The actuating characteris- tics are also compared with the simulalted results considering heat transfer and thermal expansion in the polysilicon layer. This microactuator technology can be utilized for the fabrication of MEMS (microelectromechanical system) such as microrelay, which requires large displacement or contact force but relatively slow response.

  • PDF

Ultra Wideband (UWB) - Introduction and Signal Modeling

  • Manandhar, Dinesh;Shibasaki, Ryosuke
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.1421-1423
    • /
    • 2003
  • Ultra Wideband is a new technology from commercial or civilian application viewpoint. It uses already allocated radio spectrum without causing significant interference to other users. It uses very low power, which is below the thermal noise of the receiver and is inherently difficult to detect by un-intentional users. Since, FCC approved the regulation for the commercial use of UWB in February 2002, the development of UWB technology is drastically gaining momentum. However, the technology itself is not new. It has already been used in military applications. UWB has three basic areas of applications, which are communication, positioning and imaging (UWB Microwave). The main commercial application will be for communication since it has very high data transfer rate for short distance. It can also be used for both indoor and outdoor 3-D positioning. Another important application is imaging like microwave remote sensing. An UWB sensor can pass through doors and walls and hence detect the objects inside the room. In this paper, we will introduce about UWB technology along with it’s various possible applications. We will also present some models to generate UWB signal and it’s analysis using signal-processing tools.

  • PDF