• Title/Summary/Keyword: Transfer Die

Search Result 135, Processing Time 0.025 seconds

Optimum Design of Moving Carrier for Minimizing Deflection in Al5083 Thick Plate (대면적 알루미늄 후판의 수평 이송을 위한 캐리어 최적설계)

  • Jeon, H.W.;Yoon, J.H.;Lee, J.H.
    • Transactions of Materials Processing
    • /
    • v.22 no.7
    • /
    • pp.389-393
    • /
    • 2013
  • One of the most efficient designs for manufacturing LNG tank is the Moss spherical type because it has been validated through precise analyses with respect to reliability and construction safety by stress analysis. The Moss spherical tank is assembled with hundreds of Al thick plate patches that are deformed to curved shape at elevated temperature and welded together. It is essential to evaluate the amount of deflection in the Al5083 thick plate when the patch is transferred from the heating chamber to the forming die since the patch has a length of 12,000 mm and a thickness of 60 mm. Based on FE analysis results, a design procedure for minimizing deflection in Al5083 thick plate during transfer using a moving carrier is demonstrated in this paper.

Improvement on the Formability of Magnesium Alloy Sheet by Heating and Cooling Method (가열냉각법에 의한 마그네슘 합금의 판재 성형성 개선)

  • Kang, D.M.;Manabe, K.
    • Journal of Power System Engineering
    • /
    • v.9 no.3
    • /
    • pp.66-70
    • /
    • 2005
  • Structural components for aerospace, electronics and automobile industry are the main applications for magnesium alloys due to their lightweight and high specific strength. The adoption of magnesium alloys in sheet forming processes is still limited, due to their low formability at room temperature caused by the hexagonal crystal structure. In this paper, the authors aim to improve the formability of AZ31 magnesium alloy. For this, experiment and finite element analysis on used warm deep drawing process with a local heating and cooling technique were done. Both die and blank holder were heated at various warm temperature while the punch was kept at room temperature by cooling water.

  • PDF

Improvement on the formability of magnesium alloy sheet by heating and cooling method(II) (가열냉각법에 의한 마그네슘합금의 판재성형성개선(II))

  • Manabe K.;Kang Dae-Min
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.385-388
    • /
    • 2005
  • The use of magnesium alloys meets the need of reducing weight of componests(especially in automotive and aerospace industry) keeping unmodified their mechanical properties. The adoption of magnesium alloys in sheet forming processes is still limited, due to their low formability at room temperature caused by the hexagonal crystal structure. In this study, the authors aim to understand the process condition which can lead to a successful improvement in the formability of a magnesium alloy(AZ31). Experiment and simulations of deep drawing were doned at various warm temperature for the blank and tool(holde and die)while the punch was kept at room temperature by cooling wale. in order to confirm that the deep drawing performance of magnesium alloy can be considerably enhanced with using the local heating and cooling technique.

  • PDF

An Analysis Finite Element for Elasto-Plastic Stresses Considerating Phase Transformation at the Quenching Process(II) -From Austenite to Martensite- (퀜칭과정에서 상변태를 고려한 탄소성 열응력의 유한요소 해석(II) -오오스테나이트에서 마르텐사이트로의 변태-)

  • Kim, O.S.;Song, G.H.;Koo, B.K.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.8 no.1
    • /
    • pp.12-23
    • /
    • 1995
  • In this a set of constitutive equation relevant to the analysis of thermo-elasto-plastic materials with phase transformation during quenching process was presented on the basis of continuum thermo-dynamic. In calculating the transient thermal stresses, temperature between coolant and specimen(SM45C) surface was determined from the heat transfer coefficient. A calculation was made for specimen with 40mm in diameter quenched in coolant from $820^{\circ}C$ and the results are as follow. Stresses at starting point of transformation always show the maximum tensile value. Reverse of stresses takes place after completion of transformation of inner part at specimen.

  • PDF

Analysis of Combustion Air Flow in Incinerator (소각로의 연소 공기 유동 해석)

  • Lee, Dong-Hyuk
    • Design & Manufacturing
    • /
    • v.16 no.2
    • /
    • pp.26-32
    • /
    • 2022
  • It is known that the fluidized bed incinerator, which is the subject of analysis, shows excellent performance in heat and mass transfer due to excellent mixing and contact performance between fluidized sand and fuel, and also shows relatively good combustion characteristics thanks to good mixing and long residence time for low-grade fuels. have. In this study, air flow analysis is performed to understand the characteristics of co-firing of sludge, waste oil and solid waste in the fluidized bed incinerator, flow characteristics of flue gas, and discharge characteristics of pollutants.The fluidized bed incinerator subject to analysis is a facility that incinerates factory waste and general household waste together with sludge, with a processing capacity of 32 tons/day. to be. In addition, the operation method was designed for continuous operation for 24 hours. As a result, it can be seen that the lower combustion air and the introduced secondary air are changed to a strong turbulence and swirl flow form and exit through the outlet while rotating inside the freeboard layer. The homogeneous one-way flow form before reaching the secondary air nozzle has very high diffusivity with the high-speed jet flow of the nozzle.

Implementation of an simulation-based digital twin for the plastic blow molding process (플라스틱 블로우몰딩 공정의 해석기반 디지털 트윈 구현)

  • Seok-Kwan Hong
    • Design & Manufacturing
    • /
    • v.17 no.3
    • /
    • pp.1-7
    • /
    • 2023
  • Blow molding is a manufacturing process in which thermoplastic preforms are preheated and then pneumatically expanded within a mold to produce hollow products of various shapes. The two-step process, a type of blow molding method, requires the output of multiple infrared lamps to be adjusted individually, so the process of finding initial conditions hinders productivity. In this study, digital twin technology was applied to solve this problem. A blow molding simulation technique was established and simulation-based metadata was generated. A response surface ROM (Reduced Order Model) was built using the generated metadata. Then, a dynamic ROM was constructed using the results of 3D heat transfer analysis. Through this, users can quickly check the product wall thickness uniformity according to changes in the control value of the heating lamp for products of various shapes, and at the same time, check the temperature distribution of the preform in real time.

EFFECTS OF CONVERGENT ANGLE OF NOZZLE CONTRACTION ON HIGH-SPEED OPTICAL FIBER COATING FLOW (노즐 축소부 수렴각이 고속 광섬유 피복유동에 미치는 영향)

  • Park, S.;Kim, K.;Kwak, H.S.
    • Journal of computational fluids engineering
    • /
    • v.21 no.4
    • /
    • pp.11-18
    • /
    • 2016
  • A numerical study is conducted on the optical fiber coating flow in a primary coating nozzle consisting of three major parts: a resin chamber, a contraction and a coating die of small diameter. The flow is driven by the optical fiber penetrating the center of the nozzle at a high speed. The axisymmetric two-dimensional flow and heat transfer induced by viscous heating are examined based on the laminar flow assumption. Numerical experiments are performed with varying the convergent angle of nozzle contraction and the optical fiber drawing speed. The numerical results show that for high drawing speed greater than 30 m/s, there is a transition in the essential flow features depending on the convergent angle. For a large convergent angle greater than $30^{\circ}$, unfavorable multicellular flow structures are monitored, which could be associated with wall boundary-layer separation. In the regime of small convergent angle, as the angle increases, the highest resin temperature at the exit of die and the coating thickness decrease but the sensitivity of coating thickness on drawing speed and the maximum shear strain of resin on the optical fiber increase. The effects of the convergent angle are discussed in view of compromise searching for an appropriate angle for high-speed optical fiber coating.

Titanium alloy bolt hot forging process analysis through plastic working analysis (소성 가공 해석을 통한 티타늄 합금 볼트 열간 단조 공정 분석)

  • Choi, Doo-Sun;Kim, Tae-Min;Han, Bong-Seok;Han, Yu-Jin;Ko, Kang-Ho;Park, Jung-Rae;Park, Kyu-Bag;Lee, Jung-Woo;Kim, Do-Un
    • Design & Manufacturing
    • /
    • v.14 no.1
    • /
    • pp.42-48
    • /
    • 2020
  • Titanium alloy has been in the spotlight as a core material in high-tech industries that require high strength and light weight because it has excellent strength and corrosion resistance and strength is higher than that of steel. Therefore, in various industries, existing steel products are intended to be replaced with titanium alloys. Titanium alloys can cause cutting tool breakage during cutting, and heat generated during cutting does not dissipate, accumulates in tools and workpieces, resulting in large wear and tear on thin workpieces. In addition, since titanium alloy is a metal with high chemical activity, the wear of the tool becomes more severe when the cutting speed is high, so machining of titanium bolt through cutting is very disadvantageous in terms of productivity. Therefore, the production of bolts using titanium alloys is being produced through a forging process to improve productivity and product quality. In this paper, hot forging molding analysis was performed on bolts used for fastening automobile parts using Ti-6Al-4V alloy, which is the most commonly used titanium alloy.

Development of Isothermal Pass Schedule Program for the Re-design of a Continuous High Carbon Steel Wire Drawing Process (고탄소강 연속 신선 공정의 재설계를 위한 등온패스스케줄 프로그램의 개발)

  • Kim, Young-Sik;Kim, Dong-Hwan;Kim, Byung-Min;Kim, Min-An;Park, Yong-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.5
    • /
    • pp.57-64
    • /
    • 2001
  • The high speed in the wire-drawing process to meet the demands for the increased productivity has a great effect on the heat generated due to plastic deformation and friction between the wire and the drawing dies. During the high carbon steel wire drawing process, the temperature rise gives a great influence to the fracture of wire. In this paper, to control the temperature rise in the wire after the deformation through the drawing die, the calculation method of the wire temperature, which includes the temperature rise in the deformation zone as well as the temperature drop in the block considering the heat transfer among the wire, cooling water and surrounding air, is proposed. These calculated results of the wire temperature at the inlet and exit of the drawing die at each pass are compared with the measured wire temperatures and verified its efficiency. So, using the program to predict the wire temperature, the isothermal pass schedule program was developed. By applying this isothermal pass schedule program to the conventional process condition, a new isothermal pass schedule is redesigned through all passes. As a result, the possibility of wire fracture could be considerably reduced and the productivity of final product could be more increased than before.

  • PDF

A study on the change of material width by forging processing in fine pitch connector of C5210-H(HP) and NKT322-EH materials (C5210-H(HP)와 NKT322-EH 소재의 협피치 커텍터에서 단조 가공에 의한 소재 폭 변화에 관한 연구)

  • Shin, Mi-Kyung;Lee, Chun-Kyu
    • Design & Manufacturing
    • /
    • v.14 no.3
    • /
    • pp.17-22
    • /
    • 2020
  • As devices such as smartphones, tablet PC, and wearable devices have been miniaturized, the connectors that go into the devices are also designed to be very small. The connector combines the plug and the receptacle to transfer electricity. As devices are miniaturized, the contact shape is formed by partially thinning the thickness of the raw material of the terminal in order to lower the coupling height of the plug and receptacle. The product used in this study is a receptacle terminal used for 0.4mm pitch board to board connector among fine pitch connectors. When the material thickness is reduced by forging the receptacle terminal, the width change of the pin is checked. To reduce the thickness of the material by forging, pre-notching is applied in the first step, forging in the second step, and notching in the third step. After forming the width dimension of the pin to 0.28 mm in the pre-notching process, in the forging process, the material thickness 0.08 mm and 0.02 mm (25%) were forged and the thickness was changed to 0.06 mm and the width change amount of the pin was measured. The facility produced 10,000 pieces at 400 SPM using a Yamada Dobby (MXM-40L) press, and thirty pins were measured and the average value was shown. After forging by using C5210-H (HP) and NKT322-EH, which are frequently used in connectors, analyze the amount of change in each material. The effect of punching oil on forging is investigated by appling FM-200M, which is highly viscous, and FL-212, fast drying oil. This study aims to minimize mold modification by predicting the amount of material change after forging.