• Title/Summary/Keyword: Transducer design

Search Result 383, Processing Time 0.035 seconds

Optimal Design of a Flextensional Transducer Considering All the Cross-coupled Effects of the Design Variables (설계변수들의 상호효과를 고려한 Flextensional 트랜스듀서의 최적설계)

  • 강국진;노용래
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.5
    • /
    • pp.364-374
    • /
    • 2003
  • The performance of an acoustic transducer is determined by the effects of many design variables. and mostly the influences of these design variables are not linearly independent of each other To achieve the optimal performance of an acoustic transducer, we must consider the cross-coupled effects of the design variables. In this study with the FEM. we analyzed the variation of the resonance frequency and sound pressure of a flextensional transducer in relation to Its design variables. Through statistical multiple regression analysis of the results, we derived functional forms of the resonance frequency and sound pressure in terms of the design variables, and with which we determined the optimal structure of the transducer by means of a constrained optimization technique, SQP-PD. The proposed method can reflect all the cross-coupled effects of multiple design variables, and can be utilized to the design of general acoustic transducers.

Optimal Structural Design of a Flextensional Transducer Considering the Working Environment (적용환경을 고려한 Flextensional 변환기의 최적구조 설계)

  • Kang, Kook-Jin;Roh, Yong-Rae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.12
    • /
    • pp.1063-1070
    • /
    • 2008
  • The performance of an acoustic transducer is determined by the effects of many design variables, and mostly the influences of these design variables are not linearly independent of each other. To achieve the optimal performance of an acoustic transducer, we must consider the cross-coupled effects of the design variables. In this study, the variation of the performances of underwater acoustic transducer in relation to its structural variables was analyzed. In addition, the new optimal design scheme of an acoustic transducer that could reflect not only individual but also all the cross-coupled effects of multiple structural variables, and could determine the detailed geometry of the transducer with great efficiency and rapidity was developed. The validation of the new optimal design scheme was verified by applying the optimal structure design of a flextensional transducer which are the most common use for high power underwater acoustic transducer. With the finite element analysis(FEA), we analyzed the variation of the resonance frequency, sound pressure, and working depth of a flextensional transducer in relation to its design variables. Through statistical multiple regression analysis of the results, we derived functional forms of the resonance frequency, sound pressure, and working depth in terms of the design variables. By applying the constrained optimization technique, Sequential Quadratic Programming Method of Phenichny and Danilin(SQP-PD), to the derived function, we designed and verified the optimal structure of the Class IV flextensional transducer that could provide the highest sound pressure level and highest working depth at a given operation frequency of 1 kHz.

Optimal Structural Design of a Tonpilz Transducer Considering the Characteristic of the Impulsive Shock Pressure (충격 특성을 고려한 Tonpilz 변환기의 최적구조 설계)

  • Kang, Kook-Jin;Roh, Yong-Rae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.11
    • /
    • pp.987-994
    • /
    • 2008
  • The optimal structure of the Tonpilz transducer was designed. First, the FE model of the transducer was constructed, that included all the details of the transducer which used practical environment. The validity of the FE model was verified through the impedance analysis of the transducer. Second, the resonance frequency, the sound pressure, the bandwidth, and the impulsive shock pressure of the transducer in relation to its structural variables were analyzed. Third, the design method of $2^n$ experiments was employed to reduce the number of analysis cases, and through statistical multiple regression analysis of the results, the functional forms of the transducer performances that could consider the cross-coupled effects of the structural variables were derived. Based on the all results, the optimal geometry of the Tonpilz transducer that had the highest sound pressure level at the desired working environment was determined through the optimization with the SQP-PD method of a target function composed of the transducer performance. Furthermore, for the convenience of a user, the automatic process program making the optimal structure of the acoustic transducer automatically at a given target and a desired working environment was made. The developed method can reflect all the cross-coupled effects of multiple structural variables, and can be extended to the design of general acoustic transducers.

A Beam Design Method for Planar Array with Unequal Transducer Sensitivities (불균일 트랜스듀서 감도를 갖는 평면 배열의 빔 설계 기법)

  • 조치영;권오조
    • Journal of KSNVE
    • /
    • v.8 no.4
    • /
    • pp.663-669
    • /
    • 1998
  • In this paper, a beam design method is presented for the planar array with unequal transducer sensitivities. Basically the proposed method consists of two steps. At first, the optimum weightings are designed with the assumption that all array elements have an uniform sensitivity. Next, the compesnated weightings for the unequal transducer sensitivities can reversely be determined from an inverse problem utilizing the design beam pattern evaluated by the predetermined optimal weightings. A numerical example is inculded to illustrate the proposed method.

  • PDF

An approach to design and fabrication of resonant giant magnetostrictive transducer

  • Sheykholeslami, Mohammad R.;Hojjat, Yousef;Cinquemani, Simone;Ghodsi, Mojtaba;Karafi, M.
    • Smart Structures and Systems
    • /
    • v.17 no.2
    • /
    • pp.313-325
    • /
    • 2016
  • The paper provides a comprehensive procedure for the mechanical and magnetic design of Langevin transducer based on giant magnetostrictive material. The the transducer is designed to work at its second mode of vibration, having high mechanical quality factor and low damping coefficient. The design procedure is based on an analytical model and it is verified by finite-element analysis. Experimental tests based on impedance response analysis in first and second modes are carried out on the prototype. Results confirm the appropriate design of this transducer, demonstrating the highest mechanical quality factor between the resonant transducers in the literature.

Design and Fabrication of a Convex Array Ultrasonic Transducer with Finite Element Analysis (유한요소 해석법을 이용한 컨벡스 배열형 초음파 탐촉자의 설계 및 제작)

  • Lee, Su-Sung;Kwon, Jae-Hwa;Eun, Hong;Roh, Yong-Rae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.7
    • /
    • pp.592-599
    • /
    • 2002
  • In this study, an ultrasonic transducer was designed with a commercial finite element analysis (FEA) code, PZFlex, and fabricated based on the design. The transducer has the dimension and shape suitable for abdomen diagnosis working at 5 ㎒ and consists of 128 piezoelectric elements disposed in a convex linear array form. The transducer is composed of two impedance matching layers, one backing layer, and kerfs placed between the piezoelectric elements. Validity of the design with the FEA was illustrated through experimental characterization of a sample transducer. Comparison with the design results by equivalent circuit analysis method was also made to check the superiority of the FEA design.

A Study on Design of Underwater Acoustic Transducers Using the Electro-mechanical Coupling Analysis Code ATILA (전기-기계 연성해석 코드 ATILA를 이용한 수중 음향 트랜스듀서 설계)

  • Lee, Jeong-min;Cho, Yo-han;Kim, Jung-suk
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.10 s.103
    • /
    • pp.1211-1216
    • /
    • 2005
  • Underwater acoustic transducers are widely used for SONAR application, whose important design parameters are shapes. materials, dimensions and supporting structures. Practical design method of transducers consists of manufacturing, experiments and modifications so that it requires much time and expenses. In this study, an analytical method was developed for the Tonpilz type transducers using the commercial finite element analysis code ATILA which can solve the electro-mechanical coupling problems. A finite element model was established including the transducer elements such as ceramic stack, head mass, tail mass, tensile bolt, and molding layers. The proposed model was verified and modified by comparing the in-air and in-water test results of prototypes. The developed analysis method will be effectively used for the sensitivity analysis of design parameters in transducer design process.

Tonpilz Type Underwater Acoustic Transducers Design using Finite Element Method (유한요소법을 이용한 Tonpilz형 수중 음향 트랜스듀서 설계)

  • Cho, Yo-Han;Kim, Jung-Suk;Lee, Jeong-Min
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.247-250
    • /
    • 2005
  • Underwater acoustic transducers are widely used for SONAR application, whose important design parameters are shapes, materials, dimensions and supporting structures. Practical design method of transducers consists of manufacturing, experiments and modifications so that It requires much time and expenses. In this study, an analytical method was developed for the Tonpilz type transducers using the commercial finite element analysis code ATILA which can solve the electro-mechanical coupling Problems. A finite element model was established including the transducer elements such as ceramic stack, head mass, tall mass, tensile bolt, and molding layers. The proposed model was verified and modified by comparing the in-air and in-water test results of prototypes. The developed analysis method will be effectively used for the sensitivity analysis of design parameters in transducer design process.

  • PDF

Study on the Wideband Tonpilz Transducer with a Cavity-Type Head Mass (중공형 전면추를 가진 Tonpilz 트랜스듀서 연구)

  • Kim, Hyunki;Lim, Youngsub;Roh, Yongrae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.2
    • /
    • pp.94-101
    • /
    • 2014
  • In this work, we present an underwater acoustic transducer with a cavity-type head mass to achieve a wide frequency bandwidth. We analyzed the effects of design variables on the transducer characteristics, and optimized the structure of the Tonpilz transducer based on the analysis results. Further, validity of the design was verified by manufacturing a prototype of the transducer and measuring its properties. The designed transducer had a far wider -6 dB fractional bandwidth which is 131 % than that of a single mode transducer, and the measured results were confirmed to be in good agreement with the analysis results.

Design and Fabrication of a 2D Array Ultrasonic Transducer (2D 배열형 초음파 트랜스듀서의 설계 및 제작)

  • Lee, Wonseok;Woo, Jeongdong;Roh, Yongrae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.5
    • /
    • pp.393-401
    • /
    • 2013
  • In this paper, a $48{\times}64$ channel 2D array ultrasonic transducer with piezoelectric single crystals was designed, fabricated, and evaluated. Structure of the transducer was chosen to facilitate the electric connection on the planar array, and then components were fabricated in accordance with the structure. Detailed structure of the transducer was designed through finite element analyses. In order to improve the performance of the transducer, the crosstalk between adjacent elements was reduced through the control of kerf width and material, and the target frequency bandwidth was achieved through optimal design of the thickness of the single crystal and matching layers. After fabricating a prototype of the transducer according to the design and measuring its characteristics, the results were compared with those of finite element analyses to evaluate the performance of the developed transducer.