Browse > Article
http://dx.doi.org/10.4313/JKEM.2008.21.11.987

Optimal Structural Design of a Tonpilz Transducer Considering the Characteristic of the Impulsive Shock Pressure  

Kang, Kook-Jin (한국섬유기계연구소 연구기획실)
Roh, Yong-Rae (경북대학교 기계공학부)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.21, no.11, 2008 , pp. 987-994 More about this Journal
Abstract
The optimal structure of the Tonpilz transducer was designed. First, the FE model of the transducer was constructed, that included all the details of the transducer which used practical environment. The validity of the FE model was verified through the impedance analysis of the transducer. Second, the resonance frequency, the sound pressure, the bandwidth, and the impulsive shock pressure of the transducer in relation to its structural variables were analyzed. Third, the design method of $2^n$ experiments was employed to reduce the number of analysis cases, and through statistical multiple regression analysis of the results, the functional forms of the transducer performances that could consider the cross-coupled effects of the structural variables were derived. Based on the all results, the optimal geometry of the Tonpilz transducer that had the highest sound pressure level at the desired working environment was determined through the optimization with the SQP-PD method of a target function composed of the transducer performance. Furthermore, for the convenience of a user, the automatic process program making the optimal structure of the acoustic transducer automatically at a given target and a desired working environment was made. The developed method can reflect all the cross-coupled effects of multiple structural variables, and can be extended to the design of general acoustic transducers.
Keywords
Tonpilz transducer; Optimal design; FEA; Constrained optimization; Impulsive shock pressure;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D. W. Hawkins and P. T. Gough, "Multiresonance design of a Tonpilz transducer using the finite element method", IEEE UFFC, Vol. 43, No. 5, p. 782, 1996   DOI   ScienceOn
2 L. E. Kinsler, A. R. Frey, A. B. Coppens, and J. V. Sanders, "Fundamentals of Acoustics", John Wiley & Sons, New York, p. 171, 2000
3 J. R. Oswin and J. Dunn, 'Frequency, power and depth performance of Class IV flextensional transducers', in: B. Hamonic and J. N. Decarpigny (Eds.), Power Sonics and Ultrasonic Transducers Design, Springer- Verlag, Berlin, 1988
4 A. D. Belegudu and T. R. Chandrupatla, "Optimization Concepts and Applications in Engineering", Prentice Hall, New Jersey, p. 141, 1999
5 Q. Yao and L. Bjorno, "Broadband Tonpilz underwater acoustic transducers based on multimode optimization", IEEE UFFC, Vol. 44, No. 5, p. 1060, 1996
6 O. B. Wison, "Introduction to Theory and Design of Sonar Transducers", Peninsulr publishing, Los Altos, p. 109, 1988
7 P. Dufourcq, J. Adda, M. Letiche, and E. Sernit, "Transducers for great depths", in: B. Hamonic, O. B. Wilson, and J. N. Decarpigny (Eds.), Power Transducers for Sonics and Ultrasonics, Springer-Verlag, Berlin, 1991
8 F. Massa, "Electroacoustic transducer with improved shock resistance", US Patent, No. 3,474,403, 1969
9 G. R. Slebzak, "Transducer assembly with explosive shock protection", US Patent, No. 4,704,709, 1987
10 K. R. Dhilsha, "Performance of a low- frequency, multi-resonant broadband tonpilz transducer", J. Acoust. Soc. Am., Vol. 111, No. 4, p. 1692, 2002   DOI   ScienceOn
11 K. R. Dhilsha and K. V. S. Rama Rao, "Design and fabrication of a low frequency giant magnetostrictive transducer", J. of Alloys and Compounds, Vol. 258, p. 53, 1997   DOI   ScienceOn
12 F. Claeyssen and P. Bouchilloux, "Actuators, transducers and motors based on giant magnetostrictive materials", J. of Alloys and Compounds, Vol. 258, p. 61, 1997   DOI   ScienceOn
13 M. B. Moffett, A. E. Clark, M. Wun-Fogle, J. Linberg, J. P. Teter, and E. A. McLaughlin, "Characterization of Terfenol-D for magnetostrictive transducers", J. Acoust. Soc. Am., Vol. 89, No. 3, p. 1448, 1991   DOI