• Title/Summary/Keyword: Transdermal Permeation

Search Result 120, Processing Time 0.027 seconds

Transdermal and topical LMWH delivery from ultradeformable and other vesicles: Characterization and in vitro and vivo permeation studies

  • Hyun, Myung-Ja;Park, Jeong-Sook;Kim, Chong-Kook
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.247.2-247.2
    • /
    • 2003
  • To increase skin permeability of LMWH (Low Molecular Weight Heparin), ultradeformable liposomes were developed. Ultradeformable liposomes were developed by Egg phosphatidylcholine (Egg-PC) and edge activator. Entrapment efficiency, vesicle size and zeta potential of vesicles were determined and characterized for deformability and stability. Transepidermal permeation of LMWH was compared to saturated aqueous control in vitro. The steady-state flux and its maximum time were calculated from the flux curves. (omitted)

  • PDF

Skin Permeation of Indomethacin from Gels (겔제제로부터 인도메타신의 피부투과)

  • Kam, Sung-Hoon;Park, Eun-Seok;Chi, Sang-Cheol
    • Journal of Pharmaceutical Investigation
    • /
    • v.25 no.2
    • /
    • pp.129-136
    • /
    • 1995
  • In order to reduce the systemic side effects and the gastrointestinal irritation of indomethacin following its oral administration, the drug was formulated as a transdermal gel using poloxamer 407. In vitro diffusion cells fitted with excised rat skins were used to evaluate the effects of formulation variables on skin permeation of indomethacin from poloxamer gels. The formulation variables were the concentrations of indomethacin, poloxamer 407 and ethanol, and the gel pH. The increase of the drug amount in the gel from 0.5% to 2.0% induced a direct but nonlinear increase in the skin permeation rate of indomethacin. The increase of poloxamer concentration from 17.5% to 25% in the gel resulted in a decrease of skin permeation rate of indomethacin, which was due to a reduction in the amount of free drug molecules available for permeation through skin by entrapping more drug molecules within the micelles formed by poloxamer. The increase of ethanol concentration from 10% to 20% in the gel resulted in a linear increase of permeation rate of indomethacin through skin, possibly due to the penetration enhancing effect of ethanol. The skin permeation of indomethacin was substantially influenced by the gel pH, exhibiting a maximum at pH 4.

  • PDF

Design of Transdermal Delivery System Using New Film-Forming Agents (신규 필름형성제를 이용한 경피흡수제제의 설계)

  • Choi, Yang-Gyu;Kim, Young-So;Kim, Jung-Ju;Sim, Young-Chul
    • Journal of Pharmaceutical Investigation
    • /
    • v.33 no.3
    • /
    • pp.163-169
    • /
    • 2003
  • In order to develop a film-forming transdermal drug delivery system, polyurethane (PU) based on poly(ethylene glycol) and poly(tetramethylene oxide) was synthesized and characterized. The synthesized PU was blended with Gantrez ES 225 (GT) to improve the adhesion property of film-forming agent to the skin. When film-forming gel formulation containing 3% ketoprofen (KP) was applied, transparent thin film was obtained within 5 minutes and adhered to the skin for 8 hours. In vitro percutaneous absortion studies were performed to determine the rate of ketoprofen absorption through guinea pig skin. A prominent effect of limonene on the skin permeability of ketoprofen was observed among the various skin permeation enhancers investigated. Considering mechanica properties of film and skin permeability of ketoprofen, 2% of limonene was optimal content in the film forming transdermal formulation.

Rat Skin Permeation of Diclofenac and its Prodrugs (디클로페낙 프로드럭들의 흰쥐 피부 투과)

  • Doh, Hea-Jeong;Cho, Won-Jea;Yong, Chul-Soon;Lee, Chi-Ho;Kim, Dae-Duk
    • Journal of Pharmaceutical Investigation
    • /
    • v.31 no.2
    • /
    • pp.95-100
    • /
    • 2001
  • Various alkyl ester prodrugs of diclofenac were synthesized in order to investigate the relationship between their skin permeation characteristics and physicochemical properties. Solubility in various vehicles was measured at room temperature. 1-Octanol/water partition coefficients (Log P) and capacity factors (k') were measured to determine the lipophilicity of the prodrugs. Stability of prodrugs in the skin extract and homogenate was also investigated before conducting the skin permeation studies. Increases in the Log P and capacity factor values were observed when alkyl esters of diclofenac were prepared. Since the aqueous solubility of the prodrugs was not high enough, they were saturated in propylene glycol (PG) for skin permeation studies. Prodrugs were rapidly metabolized to diclofenac, both in skin homogenate and in dermal extract of skin. The skin permeation rate of alkyl ester prodrugs was significantly higher than diclofenac with shorter lag time. Moreover, a parabolic relationship was observed between the permeation rate and the log P values of prodrugs, and the maximum flux was achieved at a log P value of around 4.0.

  • PDF

Effect of Various Enhancers on Permeation of Scopolamine through Excised Rat Skin (스코폴라민의 흰쥐 피부투과에 대한 투과촉진제들의 영향)

  • Jung, Jae-Young;Kam, Sung-Hoon;Kim, Keon-Nam;Chi, Sang-Cheol;Park, Eun-Seok
    • Journal of Pharmaceutical Investigation
    • /
    • v.33 no.2
    • /
    • pp.141-144
    • /
    • 2003
  • The transdermal therapeutic system (TTS) of scopolamine has various advantages over its oral dosage forms. The ideal scopolamine TTS requires high skin permeation rate in short time after it is applied on the skin. In order to increase the initial skin permeation rate of scopolamine from TTS, various permeation enhancers were employed. Enhancers employed were fatty acids (oleic and linolenic acids), cyclic monoterpenes (menthol, camphor, cineole and limonene) and others (isopropyl myristate, sodium lauryl sulfate and glyceryl monostearate). The concentration of enhancers in the base were fixed to 5% (w/w). While fatty acids had little enhancing effect on the skin permeation of scopolamine, cyclic monoterpenes, isopropyl myristate and sodium lauryl sulfate resulted in $1.5{\sim}2.6-fold$ higher skin permeation rate of the drug compared to the control. However, lag time was not affected by enhancers studied.

A Case of Fentanyl Toxicity with Misused Durogesic Transdermal Patch (Durogesic 부착포로 인한 fentanyl 중독 1례)

  • Yun, Sung Hyun;Jung, Hyun Min;Kim, Ji Hye;Han, Seung Baik;Kim, Jun Sig;Paik, Jin Hui
    • Journal of The Korean Society of Clinical Toxicology
    • /
    • v.11 no.1
    • /
    • pp.49-52
    • /
    • 2013
  • Fentanyl, a synthetic, highly selective opioid ${\mu}$-receptor agonist, is 50 to 100 times more potent than morphine. The low molecular weight, high potency, great transdermal permeation rate and lipid solubility of fentanyl make it very suitable for transdermal administration. Durogesic is a novel matrix transdermal system providing continuous systemic delivery of fentanyl. In recently, there are many reports that misused or overused fentanyl transdermal patches result in severe intoxication of fentanyl. We present a case of fentanyl toxicity with misused durogesic transdermal patch and discuss the safe and appropriate application of the patches. In conclusion, fentanyl patches should be used in opioid tolerant patients and prescribed at the lowest possible dose and titrated upward as needed. All patients and their caregivers should be educated safe application of fentanyl patches and advised to avoid exposing the patches application site to direct external heat sources, such as heating pads, or electric blankets, heat lamps, sauna, hot tubs, and others. In addition, concomittant medications that affect fentanyl's metabolism should be avoided.

  • PDF

Release Characteristics to Vitamin $B_{2}$ of Chitosan Ointments In vitro (In vitro에서 키토산 연고의 비타민 $B_{2}$ 방출 특성)

  • Oh, Se-Young;Hwang, Sung-Kwy;Hwang, Yong-Hyun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.43-48
    • /
    • 2000
  • Drug delivery system(DDS) applied to various fields, such as medicine, cosmetics, agriculture and necessities of life. Among these application fields, DDS is often used as the method of drug dosage into the epidermic skin. We investigated characters of transdermal therapeutic system(TTS) and the skin permeability of that with applying DDS. Chitosan was selected as material of TTS. We investigated the permeation of chitosan ointment containing drug in rat skin using horizontal membrane cell model. Permeation properties of materials were investigated for water-soluble drug such as riboflavin in vitro. We used glycerin, PEG 600 and oleic acid as enhancers. Since dermis has more content water(hydration) than the stratum corneum, skin permeation rate at steady state was highly influenced when glycerin was used in water-soluble drug. The permeation rate of content enhancer and drug was found to be faster than that of content water-soluble drug only. These results showed that skin permeation rate of drug across the composite was manly dependent on the property of ointment base and drug. Proper selection of the polymeric materials which resemble and enhance properties of the delivering drug was found to be important in controlling the skin permeation rate.

Transdermal Delivery of Quercetin Using Elastic Liposomes: Preparation, Characterization and In Vitro Skin Permeation Study (탄성 리포좀을 사용한 쿼세틴의 경피 전달: 제조, 특성 그리고 In Vitro 피부 투과 연구)

  • Park, Soo Nam;Lim, Myoung Sun;Park, Min A;Kwon, Soon Sik;Han, Seat Byeol
    • Polymer(Korea)
    • /
    • v.36 no.6
    • /
    • pp.705-711
    • /
    • 2012
  • In this study, the elastic liposome consisted of egg phospholipids and edge activator ($Tego^{(R)}$ care 450) was prepared in order to supplement the defect of the conventional liposome. We prepared elastic liposome containing quercetin, known as natural antioxidant, and evaluated the vesicles size, elasticity, loading efficiency, stability, and in vitro skin permeation. The mean diameter of quercetin loaded elastic liposome formulations ranged between 208.2~303.4 nm and loading efficiency was observed 64.1~87.5%. The highest loading efficiency (87.5%) and deformability (28.3) were observed at the optimal ratio of 90 : 10 (egg phospholipids : $Tego^{(R)}$ care 450) among 0.1% quercetin loaded elastic liposome formulations. The elastic liposome formulation was selected for further transdermal permeation study. The elastic liposome ($129.9{\mu}g/cm^2$) exhibited more skin permeability than general liposome ($114.8{\mu}g/cm^2$) and 1,3-butylene glycol ($75.1{\mu}g/cm^2$) solution. This results suggest that the elastic liposome formulation using $Tego^{(R)}$ care 450 as a major edge activator could be useful for the delivery of active ingredient through the skin transdermal.

Elastic Liposome Formulation for Transdermal Delivery of Rutin (루틴의 피부 흡수 증진을 위한 탄성 리포좀 제형 연구)

  • Lim, Myoung-Sun;Han, Seat-Byeol;Kwon, Soon-Sik;Park, Min-A;Park, Soo-Nam
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.38 no.2
    • /
    • pp.147-154
    • /
    • 2012
  • In this study, we prepared elastic liposome containing rutin, known as antioxidants, and evaluated the physical characterization and enhanced skin permeation effect. The elastic liposome was prepared using the different ratios of egg phospholipids and $Tego^{(R)}$ care 450. The mean diameter of rutin loaded elastic liposomes formulations ranged between 205.7 ~ 298.0 nm and deforability 20.9 ~ 42.5, The loading efficiency was observed to be 52.0 ~ 71.0 %. The highest loading efficiency (71.0 %) and deformability (42.5) were observed at the optimal ratio of 85 : 15 (egg phospholipids : $Tego^{(R)}$ care 450) in the 0.1 % rutin loaded elastic liposome formulations. The elastic liposome formulation was selected for further transdermal permeation study. The elastic liposome(129.9 ${\mu}g/cm^2$) exhibited a significantly higher skin permeation compared with general liposome (98.0 ${\mu}g/cm^2$) and 1,3-butylene glycol (76.3 ${\mu}g/cm^2$) solution. These results suggest that the elastic liposome formulation using $Tego^{(R)}$ care 450 as a major edge activator could be useful for the delivery of active ingredient through the skin barrier.

Physical Characterizations and In Vitro Skin Permeation of Elastic Liposomes for Transdermal Delivery of Polygonum aviculare L. Extract (마디풀 추출물의 경피 전달을 위한 탄성 리포좀의 물리적 특성 및 In Vitro 피부 투과 연구)

  • Han, Saet Byeol;Kwon, Soon Sik;Jeong, Yoo Min;Kong, Bong Ju;Yu, Eun Ryeong;Park, Soo Nam
    • Polymer(Korea)
    • /
    • v.38 no.6
    • /
    • pp.694-701
    • /
    • 2014
  • In this study, Polygomun aviculare L. (P. aviculare L.) extract loaded elastic liposomes (ELPs) were investigated to enhance the transdermal delivery of P. aviculare L. extract composed of various flavonoids. ELPs were composed of egg phospholipids (PC) and edge activator ($Tego^{(R)}$ care 450) and the physical properties and in vitro permeation studies of ELPs were performed. Particle size ranged from 148.1 to 262.2 nm and deformability index was recorded as 11.5~25.4. Loading efficiency was from 53.1 to 66.3%. In vitro skin permeation studies using Franz diffusion cell demonstrated that ELP-4 having ratio of 85:15 for PC to $Tego^{(R)}$ care 450 exhibited the higher skin permeability than ELP-1, the general liposome without $Tego^{(R)}$ care 450. It was visually seen by fluorescence image restoration microscopy. The findings suggest that ELP-4 selected as the optimal formulation could be used as useful formulation for transdermal delivery of the extract.