DOI QR코드

DOI QR Code

Elastic Liposome Formulation for Transdermal Delivery of Rutin

루틴의 피부 흡수 증진을 위한 탄성 리포좀 제형 연구

  • Lim, Myoung-Sun (Department of Fine Chemistry, Nanobiocosmetic laboratory, and Cosmetic R&D Center, Seoul National University of Science and Technology) ;
  • Han, Seat-Byeol (Department of Fine Chemistry, Nanobiocosmetic laboratory, and Cosmetic R&D Center, Seoul National University of Science and Technology) ;
  • Kwon, Soon-Sik (Department of Fine Chemistry, Nanobiocosmetic laboratory, and Cosmetic R&D Center, Seoul National University of Science and Technology) ;
  • Park, Min-A (Department of Fine Chemistry, Nanobiocosmetic laboratory, and Cosmetic R&D Center, Seoul National University of Science and Technology) ;
  • Park, Soo-Nam (Department of Fine Chemistry, Nanobiocosmetic laboratory, and Cosmetic R&D Center, Seoul National University of Science and Technology)
  • 임명선 (서울과학기술대학교 정밀화학과, 나노바이오화장품 연구실 화장품종합기술연구소) ;
  • 한샛별 (서울과학기술대학교 정밀화학과, 나노바이오화장품 연구실 화장품종합기술연구소) ;
  • 권순식 (서울과학기술대학교 정밀화학과, 나노바이오화장품 연구실 화장품종합기술연구소) ;
  • 박민아 (서울과학기술대학교 정밀화학과, 나노바이오화장품 연구실 화장품종합기술연구소) ;
  • 박수남 (서울과학기술대학교 정밀화학과, 나노바이오화장품 연구실 화장품종합기술연구소)
  • Received : 2012.03.15
  • Accepted : 2012.06.11
  • Published : 2012.06.30

Abstract

In this study, we prepared elastic liposome containing rutin, known as antioxidants, and evaluated the physical characterization and enhanced skin permeation effect. The elastic liposome was prepared using the different ratios of egg phospholipids and $Tego^{(R)}$ care 450. The mean diameter of rutin loaded elastic liposomes formulations ranged between 205.7 ~ 298.0 nm and deforability 20.9 ~ 42.5, The loading efficiency was observed to be 52.0 ~ 71.0 %. The highest loading efficiency (71.0 %) and deformability (42.5) were observed at the optimal ratio of 85 : 15 (egg phospholipids : $Tego^{(R)}$ care 450) in the 0.1 % rutin loaded elastic liposome formulations. The elastic liposome formulation was selected for further transdermal permeation study. The elastic liposome(129.9 ${\mu}g/cm^2$) exhibited a significantly higher skin permeation compared with general liposome (98.0 ${\mu}g/cm^2$) and 1,3-butylene glycol (76.3 ${\mu}g/cm^2$) solution. These results suggest that the elastic liposome formulation using $Tego^{(R)}$ care 450 as a major edge activator could be useful for the delivery of active ingredient through the skin barrier.

본 연구에서는 항산화 활성이 우수한 루틴을 담지한 탄성 리포좀을 제조하여, 이 제형의 물리적 특성과 증진된 피부 투과 효과를 평가하였다. 탄성 리포좀은 인지질과 계면활성제의 비율을 달리하여 제조하였다. 루틴을 담지한 탄성리포좀의 평균 입자 크기는 205.7 ~ 298.0 nm, 가변형성은 20.9 ~ 42.5, 포집효율은 52.0 ~ 71.0 %로 측정되었다. 0.1 % 루틴을 담지한 탄성 리포좀 중에서 인지질과 계면활성제 비율이 85 : 15 인 경우가 가장 높은 포집효율(71.0 %)과 가변형성 지수(42.5)를 나타내었다. 이 제형을 대상으로 피부 투과 실험을 진행하였다. 그 결과 대조군으로 사용된 일반 리포좀(98.0 ${\mu}g/cm^2$)과 1,3-butylene glycol (76.3 ${\mu} g/cm^2$) 용액보다 탄성 리포좀의 피부 투과능(129.9 ${\mu}g/cm^2$)이 훨씬 더 크게 나타났다. 이러한 결과들로 미루어 보아 $Tego^{(R)}$ care 450을 이용한 탄성 리포좀이 피부를 통한 유효성분 전달에 유용하게 이용될 수 있음을 확인하였다.

Keywords

References

  1. P. L. Honeywell-Nguyen and Joke A, Bouwstra, Vesicles as a tool for transdermal and dermal delivery, Drug Discovery Today: Technologies., 2(1), 67 (2005). https://doi.org/10.1016/j.ddtec.2005.05.003
  2. G. E. Rhie, M. H. Shin, J. Y. Seo, W. W. Choi, K. H. Cho, K. H. Kim, K. C. Park, H. C. Eun, and J. H. Chung, Aging- and photoaging-dependent changes of enzymic and nonenzymic antioxidants in the epidermis and dermis of human skin in vivo, J. Invest. Dermatol., 118(4), 741 (2002). https://doi.org/10.1046/j.1523-1747.2002.01748.x
  3. S. N. Park, Skin aging and antioxidants, J. Soc. Cosmet. Scientists Korea., 23(1), 75 (1997).
  4. S. Y. Kim, S. R. Kim, H. Y. Kim, M. Kong, J. H. Lee, H. J. Lee, M. Y. Lim, N. R. Jo, and S. N. Park, Antioxidant activity and whitening effect of Cedrela sinensis A. Juss Shoots extracts, J. Soc. Cosmet. Scientists Korea., 36(3), 175 (2010).
  5. N. Kamalakkannan and P. S. M. Prince, Antihyperglycaemic and antioxidant effect of rutin, a polyphenolic flavonoid, in streptozotocin-induced diabetic Wistar rats, Basic & Clin Pharmacol Toxicol., 98(1), 97 (2006). https://doi.org/10.1111/j.1742-7843.2006.pto_241.x
  6. T. Guardia, A. E. Rotelli, A. O. Juarez, and L. E. Pelzer, Anti-inflammatory properties of plant flavonoids. Effects of rutin, quercetin and hesperidin on adjuvant arthritis in rat, Il Farmaco., 56(9), 683 (2001). https://doi.org/10.1016/S0014-827X(01)01111-9
  7. K. Sattanathan, C. K. Dhanapal, R. Umarani, and R. Manavalan, Beneficial health effects of rutin supplementation in patients with diabetes mellitus, JAPS., 1(8), 227 (2011).
  8. A. A. Fernandesa, E. L. Novellia, K. Okoshi, M. P. Okoshib, B. P. Di Muzioa, J. F. Guimaraes, and A. Fernandes Junior, Influence of rutin treatment on biochemical alterations in experimental diabetes, Bidmedicine & Pharmacotherapy., 64(3), 214 (2010). https://doi.org/10.1016/j.biopha.2009.08.007
  9. E. J. An, C. K. Kang, J. W. Kim, and B. S. Jin, Lipid-based vesicles as transdermal delivery system. KIC News., 13(4) (2010).
  10. G. Cevc and G. Blume, Lipid vesicles penetrate into intact skin owing to the transdermal osmotic gradients and hydration force, BBA - Biomembranes., 1104(1), 226 (1992). https://doi.org/10.1016/0005-2736(92)90154-E
  11. P. L. Honeywell-Nguyen, H. W. Wouter Groenink, A. M. de Graaff, and J. A. Bouwstra, The in vivo transport of elastic vesicles into human skin: effects of occlusion, volume and duration of application. JCR., 90(2), 243 (2003). https://doi.org/10.1016/S0168-3659(03)00202-5
  12. G. Cevc and G. Blume, New highly efficient formulation of diclofenac for the topical, transdermal administration in ultradeformable drug carriers, Transfersomes, BBA-Biomembranes., 1514(2), 191 (2001). https://doi.org/10.1016/S0005-2736(01)00369-8
  13. M. A. Elsayed, Y. Abdallah, F. Naggar, and M. Khalafallak, Lipid vesicles for skin delivery of drugs: Reviewing three decades of research, Int. J. Pharm., 332(1), 1 (2007). https://doi.org/10.1016/j.ijpharm.2006.12.005
  14. G. Ceve, A. Schatzlein, and H. Richardsen, Ultra-deformable lipid vesicles can penetrate the skin and other semipermeable barriers unfragmented. Evidence from double lable CLSM experiments and direct size measurements, Biochim. Biophys. Acta., 1546, 21 (2002).
  15. W. Johnson, Final report on the safety sssessment of PEG-25 propylene glycol stearate, PEG-75 propylene glycol stearate, PEG-120 propylene glycol stearate, PEG-10 propylene glycol, PEG-8 propylene glycol cocoate, and PEG-55 propylene glycol oleate, Int. J. Toxicology., 20, 13 (2001).
  16. J. E. Kim, H. J. Lee, M. S. Lim, M. A. Park, and S. N. Park, Cellular protective effect and liposome formulation for enhanced transdermal delivery of Phersicaria hydropiper L. extract, J. Soc. Cosmet. Scientists Korea., 38(1), 15 (2012). https://doi.org/10.15230/SCSK.2012.38.1.015
  17. G. Cevc, A. Schatzlein, and G. Blume, Transdermal drug carriers: Basic properties, optimization and transfer efficiency in the case of epicutaneously applied peptides, J. Control. Release., 36, 3 (1995). https://doi.org/10.1016/0168-3659(95)00056-E
  18. G. Cevc, D. Gebauer, J. Stieber, A. Schatzlein, and G. Blume, Ultraflexible vesicles, transfersomes, have an extremely low pore penetration resistanceand transport therapeutic amounts of insulin across the intact mammalian skin, Biochim. Biophys. Acta, 1368, 201 (1998). https://doi.org/10.1016/S0005-2736(97)00177-6
  19. W. G. Cho, Comparison of drug delivery using hairless mouse and pig skin, J. Kor. Oil. Chemists'Soc., 24, 410 (2007).
  20. G. M. Maghraby, A. C. Williams, and B. W. Barry, Skin delivery of oestradiol from deformable and traditional liposome: mechanistic studies, J. Pharm. Pharmacol., 51, 1123 (1999). https://doi.org/10.1211/0022357991776813
  21. D. Lichtenberg, R. J. Robson, and E. A. Dennis., Solubilization of phospholipids by detergents. Structural and kinetic aspects, Biochim. Biophys. Acta., 737(2), 285 (1983). https://doi.org/10.1016/0304-4157(83)90004-7
  22. J. Lasch, J. Hoffman, W. G. Amelyaneenka, A. A. Klibanov, V. P. Torchilin, and H. Binder, Interaction of triton X-100 and octyl glycoside with liposomal membranes at sublytic and lytic concentration: Spectroscopic studies, Biochim. Biophys. Acta., 1022, 171 (1990). https://doi.org/10.1016/0005-2736(90)90111-Z
  23. S. Jain, N. Jain, D. Bhadra, A. K. Tiwar, and N. K. Jain, Transdermal delivery of an analgesic agent using elastic liposomes: Preparation, characterization and performance evaluation, Current Drug Delivery., 2, 223 (2005). https://doi.org/10.2174/1567201054368020

Cited by

  1. Physical Characterizations and In Vitro Skin Permeation of Elastic Liposomes for Transdermal Delivery of Polygonum aviculare L. Extract vol.38, pp.6, 2014, https://doi.org/10.7317/pk.2014.38.6.694
  2. Development of Porous Cellulose Hydrogel for Enhanced Transdermal Delivery of Liquiritin and Liquiritigenin as Licorice Flavonoids vol.38, pp.5, 2014, https://doi.org/10.7317/pk.2014.38.5.676
  3. Enhanced skin delivery and characterization of rutin-loaded ethosomes vol.31, pp.3, 2014, https://doi.org/10.1007/s11814-013-0232-3
  4. The Effect of Alkyl Chain Number in Sucrose Surfactant on the Physical Properties of Quercetin-Loaded Deformable Nanoliposome and Its Effect on In Vitro Human Skin Penetration vol.8, pp.8, 2018, https://doi.org/10.3390/nano8080622
  5. Preparation and Physicochemical Properties of a Cysteine Derivative-Loaded Deformable Liposomes in Hydrogel for Enhancing Whitening Effects vol.120, pp.9, 2018, https://doi.org/10.1002/ejlt.201800125