Browse > Article
http://dx.doi.org/10.15230/SCSK.2012.38.2.147

Elastic Liposome Formulation for Transdermal Delivery of Rutin  

Lim, Myoung-Sun (Department of Fine Chemistry, Nanobiocosmetic laboratory, and Cosmetic R&D Center, Seoul National University of Science and Technology)
Han, Seat-Byeol (Department of Fine Chemistry, Nanobiocosmetic laboratory, and Cosmetic R&D Center, Seoul National University of Science and Technology)
Kwon, Soon-Sik (Department of Fine Chemistry, Nanobiocosmetic laboratory, and Cosmetic R&D Center, Seoul National University of Science and Technology)
Park, Min-A (Department of Fine Chemistry, Nanobiocosmetic laboratory, and Cosmetic R&D Center, Seoul National University of Science and Technology)
Park, Soo-Nam (Department of Fine Chemistry, Nanobiocosmetic laboratory, and Cosmetic R&D Center, Seoul National University of Science and Technology)
Publication Information
Journal of the Society of Cosmetic Scientists of Korea / v.38, no.2, 2012 , pp. 147-154 More about this Journal
Abstract
In this study, we prepared elastic liposome containing rutin, known as antioxidants, and evaluated the physical characterization and enhanced skin permeation effect. The elastic liposome was prepared using the different ratios of egg phospholipids and $Tego^{(R)}$ care 450. The mean diameter of rutin loaded elastic liposomes formulations ranged between 205.7 ~ 298.0 nm and deforability 20.9 ~ 42.5, The loading efficiency was observed to be 52.0 ~ 71.0 %. The highest loading efficiency (71.0 %) and deformability (42.5) were observed at the optimal ratio of 85 : 15 (egg phospholipids : $Tego^{(R)}$ care 450) in the 0.1 % rutin loaded elastic liposome formulations. The elastic liposome formulation was selected for further transdermal permeation study. The elastic liposome(129.9 ${\mu}g/cm^2$) exhibited a significantly higher skin permeation compared with general liposome (98.0 ${\mu}g/cm^2$) and 1,3-butylene glycol (76.3 ${\mu}g/cm^2$) solution. These results suggest that the elastic liposome formulation using $Tego^{(R)}$ care 450 as a major edge activator could be useful for the delivery of active ingredient through the skin barrier.
Keywords
rutin; elastic liposome; in vitro skin permeation; deformability; transdermal delivery systems;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 P. L. Honeywell-Nguyen and Joke A, Bouwstra, Vesicles as a tool for transdermal and dermal delivery, Drug Discovery Today: Technologies., 2(1), 67 (2005).   DOI   ScienceOn
2 G. E. Rhie, M. H. Shin, J. Y. Seo, W. W. Choi, K. H. Cho, K. H. Kim, K. C. Park, H. C. Eun, and J. H. Chung, Aging- and photoaging-dependent changes of enzymic and nonenzymic antioxidants in the epidermis and dermis of human skin in vivo, J. Invest. Dermatol., 118(4), 741 (2002).   DOI   ScienceOn
3 S. N. Park, Skin aging and antioxidants, J. Soc. Cosmet. Scientists Korea., 23(1), 75 (1997).
4 S. Y. Kim, S. R. Kim, H. Y. Kim, M. Kong, J. H. Lee, H. J. Lee, M. Y. Lim, N. R. Jo, and S. N. Park, Antioxidant activity and whitening effect of Cedrela sinensis A. Juss Shoots extracts, J. Soc. Cosmet. Scientists Korea., 36(3), 175 (2010).
5 N. Kamalakkannan and P. S. M. Prince, Antihyperglycaemic and antioxidant effect of rutin, a polyphenolic flavonoid, in streptozotocin-induced diabetic Wistar rats, Basic & Clin Pharmacol Toxicol., 98(1), 97 (2006).   DOI   ScienceOn
6 T. Guardia, A. E. Rotelli, A. O. Juarez, and L. E. Pelzer, Anti-inflammatory properties of plant flavonoids. Effects of rutin, quercetin and hesperidin on adjuvant arthritis in rat, Il Farmaco., 56(9), 683 (2001).   DOI   ScienceOn
7 K. Sattanathan, C. K. Dhanapal, R. Umarani, and R. Manavalan, Beneficial health effects of rutin supplementation in patients with diabetes mellitus, JAPS., 1(8), 227 (2011).
8 A. A. Fernandesa, E. L. Novellia, K. Okoshi, M. P. Okoshib, B. P. Di Muzioa, J. F. Guimaraes, and A. Fernandes Junior, Influence of rutin treatment on biochemical alterations in experimental diabetes, Bidmedicine & Pharmacotherapy., 64(3), 214 (2010).   DOI   ScienceOn
9 E. J. An, C. K. Kang, J. W. Kim, and B. S. Jin, Lipid-based vesicles as transdermal delivery system. KIC News., 13(4) (2010).
10 G. Cevc and G. Blume, Lipid vesicles penetrate into intact skin owing to the transdermal osmotic gradients and hydration force, BBA - Biomembranes., 1104(1), 226 (1992).   DOI   ScienceOn
11 P. L. Honeywell-Nguyen, H. W. Wouter Groenink, A. M. de Graaff, and J. A. Bouwstra, The in vivo transport of elastic vesicles into human skin: effects of occlusion, volume and duration of application. JCR., 90(2), 243 (2003).   DOI   ScienceOn
12 G. Cevc and G. Blume, New highly efficient formulation of diclofenac for the topical, transdermal administration in ultradeformable drug carriers, Transfersomes, BBA-Biomembranes., 1514(2), 191 (2001).   DOI   ScienceOn
13 J. E. Kim, H. J. Lee, M. S. Lim, M. A. Park, and S. N. Park, Cellular protective effect and liposome formulation for enhanced transdermal delivery of Phersicaria hydropiper L. extract, J. Soc. Cosmet. Scientists Korea., 38(1), 15 (2012).   DOI
14 M. A. Elsayed, Y. Abdallah, F. Naggar, and M. Khalafallak, Lipid vesicles for skin delivery of drugs: Reviewing three decades of research, Int. J. Pharm., 332(1), 1 (2007).   DOI   ScienceOn
15 G. Ceve, A. Schatzlein, and H. Richardsen, Ultra-deformable lipid vesicles can penetrate the skin and other semipermeable barriers unfragmented. Evidence from double lable CLSM experiments and direct size measurements, Biochim. Biophys. Acta., 1546, 21 (2002).
16 W. Johnson, Final report on the safety sssessment of PEG-25 propylene glycol stearate, PEG-75 propylene glycol stearate, PEG-120 propylene glycol stearate, PEG-10 propylene glycol, PEG-8 propylene glycol cocoate, and PEG-55 propylene glycol oleate, Int. J. Toxicology., 20, 13 (2001).
17 G. Cevc, A. Schatzlein, and G. Blume, Transdermal drug carriers: Basic properties, optimization and transfer efficiency in the case of epicutaneously applied peptides, J. Control. Release., 36, 3 (1995).   DOI   ScienceOn
18 G. Cevc, D. Gebauer, J. Stieber, A. Schatzlein, and G. Blume, Ultraflexible vesicles, transfersomes, have an extremely low pore penetration resistanceand transport therapeutic amounts of insulin across the intact mammalian skin, Biochim. Biophys. Acta, 1368, 201 (1998).   DOI   ScienceOn
19 W. G. Cho, Comparison of drug delivery using hairless mouse and pig skin, J. Kor. Oil. Chemists'Soc., 24, 410 (2007).
20 G. M. Maghraby, A. C. Williams, and B. W. Barry, Skin delivery of oestradiol from deformable and traditional liposome: mechanistic studies, J. Pharm. Pharmacol., 51, 1123 (1999).   DOI
21 D. Lichtenberg, R. J. Robson, and E. A. Dennis., Solubilization of phospholipids by detergents. Structural and kinetic aspects, Biochim. Biophys. Acta., 737(2), 285 (1983).   DOI   ScienceOn
22 J. Lasch, J. Hoffman, W. G. Amelyaneenka, A. A. Klibanov, V. P. Torchilin, and H. Binder, Interaction of triton X-100 and octyl glycoside with liposomal membranes at sublytic and lytic concentration: Spectroscopic studies, Biochim. Biophys. Acta., 1022, 171 (1990).   DOI   ScienceOn
23 S. Jain, N. Jain, D. Bhadra, A. K. Tiwar, and N. K. Jain, Transdermal delivery of an analgesic agent using elastic liposomes: Preparation, characterization and performance evaluation, Current Drug Delivery., 2, 223 (2005).   DOI   ScienceOn