• 제목/요약/키워드: Transcriptome analysis

검색결과 327건 처리시간 0.024초

Transcriptome Analysis of Phosphate Starvation Response in Escherichia coli

  • Baek, Jong-Hwan;Lee, Sang-Yup
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권2호
    • /
    • pp.244-252
    • /
    • 2007
  • Escherichia coli has a PhoR-PhoB two-component regulatory system to detect and respond to the changes of environmental phosphate concentration. For the E. coli W3110 strain growing under phosphate-limiting condition, the changes of global gene expression levels were investigated by using DNA microarray analysis. The expression levels of some genes that are involved in phosphate metabolism were increased as phosphate became limited, whereas those of the genes involved in ribosomal protein or amino acid metabolism were decreased, owing to the stationary phase response. The upregulated genes could be divided into temporarily and permanently inducible genes by phosphate starvation. At the peak point showing the highest expression levels of the phoB and phoR genes under phosphate-limiting condition, the phoB- and/or phoR-dependent regulatory mechanisms were investigated in detail by comparing the gene expression levels among the wild-type and phoB and/or phoR mutant strains. Overall, the phoB mutation was epistatic over the phoR mutation. It was found that PhoBR and PhoB were responsible for the upregulation of the phosphonate or glycerol phosphate metabolism and high-affinity phosphate transport system, respectively. These results show the complex regulation by the PhoR-PhoB two-component regulatory system in E. coli.

Transcriptome analysis of a medicinal plant, Pistacia chinensis

  • Choi, Ki-Young;Park, Duck Hwan;Seong, Eun-Soo;Lee, Sang Woo;Hang, Jin;Yi, Li Wan;Kim, Jong-Hwa;Na, Jong-Kuk
    • Journal of Plant Biotechnology
    • /
    • 제46권4호
    • /
    • pp.274-281
    • /
    • 2019
  • Pistacia chinensis Bunge has not only been used as a medicinal plant to treat various illnesses but its young shoots and leaves have also been used as vegetables. In addition, P. chinensis is used as a rootstock for Pistacia vera (pistachio). Here, the transcriptome of P. chinensis was sequenced to enrich genetic resources and identify secondary metabolite biosynthetic pathways using Illumina RNA-seq methods. De novo assembly resulted in 18,524 unigenes with an average length of 873 bp from 19 million RNA-seq reads. A Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation tool assigned KO (KEGG orthology) numbers to 6,553 (36.2%) unigenes, among which 4,061 unigenes were mapped into 391 different metabolic pathways. For terpenoid backbone and carotenoid biosynthesis pathways, 44 and 22 unigenes encode enzymes corresponding to 30 and 16 entries, respectively. Twenty-two unigenes encode proteins for 16 entries of the carotenoid biosynthesis pathway. As for the phenylpropanoid and flavonoid biosynthesis pathways, 63 and 24 unigenes were homologous to 17 and 14 entry proteins, respectively. Mining of simple sequence repeat identified 2,599 simple sequence repeats from P. chinensis unigenes. The results of the present study provide a valuable resource for in-depth studies on comparative and functional genomics to unravel the underlying mechanisms of the medicinal properties of Pistacia L.

Foeniculum vulgare essential oil nanoemulsion inhibits Fusarium oxysporum causing Panax notoginseng root-rot disease

  • Hongyan Nie;Hongxin Liao;Jinrui Wen;Cuiqiong Ling;Liyan Zhang;Furong Xu;Xian Dong
    • Journal of Ginseng Research
    • /
    • 제48권2호
    • /
    • pp.236-244
    • /
    • 2024
  • Background: Fusarium oxysporum (F. oxysporum) is the primary pathogenic fungus that causes Panax notoginseng (P. notoginseng) root rot disease. To control the disease, safe and efficient antifungal pesticides must currently be developed. Methods: In this study, we prepared and characterized a nanoemulsion of Foeniculum vulgare essential oil (Ne-FvEO) using ultrasonic technology and evaluated its stability. Traditional Foeniculum vulgare essential oil (T-FvEO) was prepared simultaneously with 1/1000 Tween-80 and 20/1000 dimethyl sulfoxide (DMSO). The effects and inhibitory mechanism of Ne-FvEO and T-FvEO in F. oxysporum were investigated through combined transcriptome and metabolome analyses. Results: Results showed that the minimum inhibitory concentration (MIC) of Ne-FvEO decreased from 3.65 mg/mL to 0.35 mg/mL, and its bioavailability increased by 10-fold. The results of gas chromatography/mass spectrometry (GC/MS) showed that T-FvEO did not contain a high content of estragole compared to Foeniculum vulgare essential oil (FvEO) and Ne-FvEO. Combined metabolome and transcriptome analysis showed that both emulsions inhibited the growth and development of F. oxysporum through the synthesis of the cell wall and cell membrane, energy metabolism, and genetic information of F. oxysporum mycelium. Ne-FvEO also inhibited the expression of 2-oxoglutarate dehydrogenase and isocitrate dehydrogenase and reduced the content of 2-oxoglutarate, which inhibited the germination of spores. Conclusion: Our findings suggest that Ne-FvEO effectively inhibited the growth of F. oxysporum in P. notoginseng in vivo. The findings contribute to our comprehension of the antifungal mechanism of essential oils (EOs) and lay the groundwork for the creation of plant-derived antifungal medicines.

NA-Seq를 이용한 제주산 메밀의 발아초기 전사체 프로파일 분석 (Transcriptomic Profile Analysis of Jeju Buckwheat using RNA-Seq Data)

  • 한송이;정성진;오대주;정용환;김찬식;김재훈
    • 한국산학기술학회논문지
    • /
    • 제19권1호
    • /
    • pp.537-545
    • /
    • 2018
  • 본 연구에서는 메밀의 발아초기에 발현되는 전사체의 다양한 정보 수집을 위해 양절메밀과 대관 3-3호의 RNA를 추출하여 전사체 분석을 수행하였다. 제주산 양절메밀과 대관3-3호의 종자 및 발아 후 12, 24, 36시간별로 total RNA를 추출하고, llumina Hiseq 2000 플랫폼을 사용하여 시퀀싱 하였다. SolexaQA package의 DynamicTrim과 LengthsORT 프로그램으로 이용하여 raw 데이터 분석을 실시한 후, 어셈블리(assembly)와 annotation을 수행하였다. RNA-seq raw 데이터로부터 약 84.2%, 81.5%에 해당하는 16.5Gb, 16.2Gb의 transcriptome 데이터를 확보하였다. 47Mb에 해당하는 43,494개의 대표적인 전사체(representative transcripts)를 확보하였고, 그 중에서 annotation DB와 서열 유사도를 갖는 서열은 23,165개로 확인되었다. 메밀의 representative transcripts 유전자의 유전자 온톨로지(gene ontology) 분석결과, biological process는 metabolic process (49.49%)에서, cellular components는 cell (46.12%)에서, molecular function은 catalyltic activity (80.43%)에서 유전자가 많이 분포되어 있는 것을 확인하였다. 종자의 발아에 관련된 gibberellin receptor GID1C의 경우에는 양절메밀, 대관 3-3호의 발현양이 모두 시간이 지남에 따라 증가되는 것을 확인할 수 있었으며, gibberellin 20-oxidase1의 경우에는 양절메밀에서는 발아 후 12 시간이내에 증가되었으나, 대관 3-3호에서는 36시간까지 유전자 발현양 증가하는 것을 확인할 수 있었다. 이러한 제주산 메밀의 발아초기 단계별 전사체 분석 데이터는 종간의 기능적, 형태학적 차이를 일으키는 메커니즘 규명에 도움을 줄 것으로 사료된다.

Triamcinolone acetonide alleviates benign biliary stricture by ameliorating biliary fibrosis and inflammation

  • Seyeon Joo;See Young Lee;Su Yeon Lee;Yeseong Hwang;Minki Kim;Jae Woong Jeong;Sung Ill Jang;Sungsoon Fang
    • BMB Reports
    • /
    • 제57권4호
    • /
    • pp.200-205
    • /
    • 2024
  • We conducted a comprehensive series of molecular biological studies aimed at unraveling the intricate mechanisms underlying the anti-fibrotic effects of triamcinolone acetonide (TA) when used in conjunction with fully covered self-expandable metal stents (FCSEMS) for the management of benign biliary strictures (BBS). To decipher the molecular mechanisms responsible for the anti-fibrotic effects of corticosteroids on gallbladder mucosa, we conducted a comprehensive analysis. This analysis included various methodologies such as immunohisto-chemistry, ELISA, real-time PCR, and transcriptome analysis, enabling us to examine alterations in factors related to fibrosis and inflammation at both the protein and RNA levels. Overall, our findings revealed a dose-dependent decrease in fibrosis-related signaling with higher TA concentrations. The 15 mg of steroid treatment (1X) exhibited anti-fibrosis and anti-inflammatory effects after 4 weeks, whereas the 30 mg of steroid treatment (2X) rapidly reduced fibrosis and inflammation within 2 weeks in BBS. Transcriptomic analysis results consistently demonstrated significant downregulation of fibrosis- and inflammation-related pathways and genes in steroid-treated fibroblasts. Use of corticosteroids, specifically TA, together with FCSEMS was effective for the treatment of BBS, ameliorating fibrosis and inflammation. Our molecular biological analysis supports the potential development of steroid-eluted FCSEMS as a therapeutic option for BBS in humans resulting from various surgical procedures.

Transcriptome analysis, microsatellite marker information, and orthologous analysis of Capsicum annuum varieties

  • Ahn, Yul-Kyun;Karna, Sandeep;Kim, Jeong-Ho;Lee, Hye-Eun;Kim, Jin-Hee;Kim, Do-Sun
    • Journal of Plant Biotechnology
    • /
    • 제43권3호
    • /
    • pp.311-316
    • /
    • 2016
  • The efficacy of plant breeding has been enhanced by application of molecular markers in population screening and selection. Pepper (Capsicum annuum L.) is a major staple crop that is economically important with worldwide distribution. It is valued for its spicy taste and medicinal effect. The aim of this study was to discover single nucleotide polymorphisms (SNPs), microsatellite markers information, and percentage sharing through orthologous analysis of pepper-specific pungency-related genes. Here, we report the results of transcriptome analysis and microsatellite markers for four pepper varieties that possess a pungency-related gene. Orthologous analyses was performed to identify species-specific pungency-related genes in pepper, Arabidopsis thaliana L., potato (Solanum tuberosum L.), and tomato (Solanum lycopersicum L.). Advancements in next-generation sequencing technologies enabled us to quickly and cost-effectively assemble and characterize genes to select molecular markers in various organisms, including pepper. We identified a total of 9762, 7302, 8596, and 6886 SNPs for the four pepper cultivars Blackcluster, Mandarine, Saengryeg 211, and Saengryeg 213, respectively. We used 454 GS-FLX pyrosequencing to identify microsatellite markers and tri-nucleotide repeats (54.4%), the most common repeats, followed by di-, hexa-, tetra-, and penta-nucleotide repeats. A total of 5156 (15.9%) pepper-specific pungency-related genes were discovered as a result of orthologous analysis.

Classification of Genes Based on Age-Related Differential Expression in Breast Cancer

  • Lee, Gunhee;Lee, Minho
    • Genomics & Informatics
    • /
    • 제15권4호
    • /
    • pp.156-161
    • /
    • 2017
  • Transcriptome analysis has been widely used to make biomarker panels to diagnose cancers. In breast cancer, the age of the patient has been known to be associated with clinical features. As clinical transcriptome data have accumulated significantly, we classified all human genes based on age-specific differential expression between normal and breast cancer cells using public data. We retrieved the values for gene expression levels in breast cancer and matched normal cells from The Cancer Genome Atlas. We divided genes into two classes by paired t test without considering age in the first classification. We carried out a secondary classification of genes for each class into eight groups, based on the patterns of the p-values, which were calculated for each of the three age groups we defined. Through this two-step classification, gene expression was eventually grouped into 16 classes. We showed that this classification method could be applied to establish a more accurate prediction model to diagnose breast cancer by comparing the performance of prediction models with different combinations of genes. We expect that our scheme of classification could be used for other types of cancer data.

Transcriptome Analysis of the Barley-Rhynchosporium secalis Interaction

  • Al-Daoude, Antonious;Shoaib, Amina;Al-Shehadah, Eyad;Jawhar, Mohammad;Arabi, Mohammad Imad Eddin
    • The Plant Pathology Journal
    • /
    • 제30권4호
    • /
    • pp.425-431
    • /
    • 2014
  • Leaf scald caused by the infection of Rhynchosporium secalis, is a worldwide crop disease resulting in significant loss of barley yield. In this study, a systematic sequencing of expressed sequence tags (ESTs) was chosen to obtain a global picture of the assembly of genes involved in pathogenesis. To identify a large number of plant ESTs, which are induced at different time points, an amplified fragment length polymorphism (AFLP) display of complementary DNA (cDNA) was utilized. Transcriptional changes of 140 ESTs were observed, of which 19 have no previously described function. Functional annotation of the transcripts revealed a variety of infection-induced host genes encoding classical pathogenesis-related (PR) or genes that play a role in the signal transduction pathway. The expression analyses by a semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) revealed that Rar1 and Rpg4 are defense inducible genes, and were consistent with the cDNA-AFLP data in their expression patterns. Hence, the here presented transcriptomic approach provides novel global catalogue of genes not currently represented in the EST databases.

Global Functional Analysis of Butanol-Sensitive Escherichia coli and Its Evolved Butanol-Tolerant Strain

  • Jeong, Haeyoung;Lee, Seung-Won;Kim, Sun Hong;Kim, Eun-Youn;Kim, Sinyeon;Yoon, Sung Ho
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권6호
    • /
    • pp.1171-1179
    • /
    • 2017
  • Butanol is a promising alternative to ethanol and is desirable for use in transportation fuels and additives to gasoline and diesel fuels. Microbial production of butanol is challenging primarily because of its toxicity and low titer of production. Herein, we compared the transcriptome and phenome of wild-type Escherichia coli and its butanol-tolerant evolved strain to understand the global cellular physiology and metabolism responsible for butanol tolerance. When the ancestral butanol-sensitive E. coli was exposed to butanol, gene activities involved in respiratory mechanisms and oxidative stress were highly perturbed. Intriguingly, the evolved butanol-tolerant strain behaved similarly in both the absence and presence of butanol. Among the mutations occurring in the evolved strain, cis-regulatory mutations may be the cause of butanol tolerance. This study provides a foundation for the rational design of the metabolic and regulatory pathways for enhanced biofuel production.