• Title/Summary/Keyword: Transcriptional Activity

Search Result 637, Processing Time 0.026 seconds

Egr-1 regulates the transcription of the BRCA1 gene by etoposide

  • Shin, Soon Young;Kim, Chang Gun;Lee, Young Han
    • BMB Reports
    • /
    • v.46 no.2
    • /
    • pp.92-96
    • /
    • 2013
  • The breast cancer susceptibility gene BRCA1 encodes a nuclear protein, which functions as a tumor suppressor and is involved in gene transcription and DNA repair processes. Many families with inherited breast and ovarian cancers have mutations in the BRCA1 gene. However, only a few studies have reported on the mechanism underlying the regulation of BRCA1 expression in humans. In this study, we investigated the transcriptional regulation of BRCA1 in HeLa cells treated with etoposide. We found that three Egr-1-binding sequences (EBSs) were located at -1031, -1005, and -385 within the enhancer region of the BRCA1 gene. Forced expression of Egr-1 stimulated the BRCA1 promoter activity. EMSA data showed that Egr-1 bound directly to the EBS within the BRCA1 gene. Knockdown of Egr-1 through the expression of a small hairpin RNA (shRNA) attenuated etoposide-induced BRCA1 promoter activity. We conclude that Egr-1 targets the BRCA1 gene in HeLa cells exposed to etoposide.

Glucosamine Inhibits Lipopolysaccharide-induced Inflammatory Responses in Human Periodontal Ligament Fibroblasts

  • Kim, Eun Dam;Park, Hyun-Jung;Baek, Jeong-Hwa
    • International Journal of Oral Biology
    • /
    • v.39 no.4
    • /
    • pp.221-228
    • /
    • 2014
  • Glucosamine is commonly taken by the elderly without prescription as a nutritional supplement to attenuate the progression or symptoms of osteoarthritis. Previous studies demonstrated that glucosamine shows anti-inflammatory effects in tissues such as blood vessels and the heart. However, there have been few reports about the effects of glucosamine on oral inflammatory diseases. Therefore, in this study, the effects of glucosamine on lipopolysaccharide (LPS)-induced inflammatory responses were investigated using human periodontal ligament fibroblasts (HPDLFs). HPDLFs were incubated in the presence and absence of glucosamine (10 mM) for 24 h, followed by treatment with E. coli LPS (100 ng/ml) or vehicle. Quantitative RT-PCR and ELISA results showed that LPS exposure significantly increased the levels of IL-6 and IL-8 mRNA and protein, while the effect was significantly suppressed by glucosamine treatment. Glucosamine did not attenuate, but slightly increased, the LPS-induced activation of mitogen activated kinases (ERK, p38, JNK). However, it suppressed the LPS-induced increase in the DNA binding affinity and transcriptional activity of NF-${\kappa}B$. These results suggest that glucosamine exerts anti-inflammatory effects on HPDLFs exposed to LPS via inhibition of NF-${\kappa}B$ activity, necessitating further studies using animal periodontitis models.

Comparative evaluation of the biological properties of fibrin for bone regeneration

  • Oh, Joung-Hwan;Kim, Hye-Jin;Kim, Tae-Il;Woo, Kyung Mi
    • BMB Reports
    • /
    • v.47 no.2
    • /
    • pp.110-114
    • /
    • 2014
  • Fibrin is a natural provisional matrix found in wound healing, while type I collagen is a major organic component of bone matrix. Despite the frequent use of fibrin and type I collagen in bone regenerative approaches, their comparative efficacies have not yet been evaluated. In the present study, we compared the effects of fibrin and collagen on the proliferation and differentiation of osteoblasts and protein adsorption. Compared to collagen, fibrin adsorbed approximately 6.7 times more serum fibronectin. Moreover, fibrin allowed the proliferation of larger MC3T3-E1 pre-osteoblasts, especially at a low cell density. Fibrin promoted osteoblast differentiation at higher levels than collagen, as confirmed by Runx2 expression and transcriptional activity, alkaline phosphatase activity, and calcium deposition. The results of the present study suggest that fibrin is superior to collagen in the support of bone regeneration.

Molecular Cloning and Characterization of Catechol 2, 3-Dioxygenase Gene from Aniline-Degrading Psseudomonas acidovorans

  • Lee, Ji-Hyun;Bang, Sung-Ho;Park, Youn-Keun;Lee, Yung-Nok
    • Korean Journal of Microbiology
    • /
    • v.30 no.4
    • /
    • pp.316-321
    • /
    • 1992
  • Catechol 2, 3-dioxygenase (C230) catalyses the oxidative ring cleavage of catechol to 2-hydroxymuconic semialdehyde. This is one of the key reactions in the metabolism of the widespresd pollutant aniline. We have cloned a gene encoding C230 from cells of the aniline degrading bacteria, Pseudomonas acidovorance KCTC2494 strain and expressed in E. coli, A 11.3-kilobase Sau3A partial digested DNA fragment from KCTC2494 was cloned into phagemid vector pBluescript and designated as pLP201. The C230 gene was mapped to a 2.8-kb region, and the derection of transcription was determined. The cloned C230 gene contains its own promoter which can be recognized and employed by E. coli transcriptional apparatus. C230 activities of subclones were identified by enzyme assay and activity staining. The T7 RNA promoter/polymerase system and maxicell analysis showed that a polypeptide with Mw of 35 kDa is the C230 gene product.

  • PDF

Quercitrin Gallate Down-regulates Interleukin-6 Expression by Inhibiting Nuclear Factor-kB Activation in Lipopolysaccharide-stimulated Macrophages

  • Min, Kyung-Rak;Kim, Byung-Hak;Chang, Yoon-Sook;Kim, Young-Soo
    • Natural Product Sciences
    • /
    • v.12 no.2
    • /
    • pp.113-117
    • /
    • 2006
  • Quercitrin gallate was previously isolated from Persicaria lapathifolia (Polygonaceae) as an inhibitor of superoxide production. In the present study, quercitrin gallate was found to inhibit interleukin (IL)-6 production in lipopolysaccharide (LPS)-stimulated macrophages RAW 264.7 with an $IC_{50}$ value of $63\;{\mu}M$. Furthermore, quercitrin gallate attenuated LPS-induced synthesis of IL-6 transcript but also inhibited LPS-induced IL-6 promoter activity, indicating that the compound could down-regulate IL-6 expression at the transcription level. Since nuclear factor (NF)-kB has been shown to play a key role in LPS-inducible IL-6 expression, an effect of quercitrin gallate on LPS-induced NF-kB activation was further analyzed. Quercitrin gallate exhibited a dosedependent inhibitory effect on LPS-induced nuclear translocation of NF-kB without affecting inhibitory kB (IkB) degradation, and subsequently inhibited LPS-induced NF-kB transcriptional activity in macrophages RAW 264.7. Taken together, quercitrin gallate down-regulated LPS-induced IL-6 expression by inhibiting NF-kB activation, which could provide a pharmacological potential of the compound in IL-6-related immune and inflammatory diseases.

New candidate for skin depigmentation: The inhibitory effect and cytotoxicity of small molecule compounds at in vitro cell culture

  • Rho, H.S;Kim, K.J.;Hwang, J.S.;H.J., Shin;Chang, H.K.;Chang, I.S.;Lee, O.S.
    • Proceedings of the SCSK Conference
    • /
    • 2003.09b
    • /
    • pp.174-183
    • /
    • 2003
  • To obtain effective and safe topical depigmenting agents, we synthesized hydroxybenzoates, alkoxybenzoates, and 3,4,5-trimethoxycinnamate containing a thymol moiety and screened then for high-level inhibitory activity against melanin synthesis. Among them, 5-methyl-2-(methylethyl)phenyl (2Ε)-3-(3,4,5-trimethoxyphenyl)prop-2-enoate (Melasolv)$^{TM}$ 4h, showed the most potent depigmenting effect ($IC_{50}$/ = 10$\mu$M) with low cytotoxicity ($IC_{50}$/ = 200$\mu$M). To find the inhibition mechanism of our candidate, various in vitro tests were performed such as DPPH assay, tyrosinase activity in mushroom or in culture cell and expression of tyrosinase, TRP-l and TRP-2. The result of this study suggested that 4h inhibited melanin synthesis by reducing the expression of tyrosinase and TRP-l at the transcriptional level in melan-a melanocytes.s.

  • PDF

Suppressive Effects of Fucoxanthin on Degranulation in IgE-antigen complex-stimulated RBL-2H3 Cells

  • NamKoong, Seung;Joo, Hae-Mi;Jang, Seon-A;Kim, Ye-Jin;Kim, Tae-Seong;Sohn, Eun-Hwa
    • Korean Journal of Plant Resources
    • /
    • v.25 no.3
    • /
    • pp.339-345
    • /
    • 2012
  • The marine carotenoid fucoxanthin can be found in marine brown seaweeds, macroalgae, diatoms, and microalgae, and has remarkable biological properties. Numerous studies have shown that fucoxanthin has considerable potential and promising applications in human health, but the underlying mechanisms involved in its anti-allergic activity are not fully understood. We here investigated the mechanisms by anti-allergic activity of fucoxanthin fraction from Eisenia bicyclis in immunoglobulin E-antigen complex (IgE/DNP-BSA)-stimulated RBL-2H3 mast cells. This study we found that the fucoxanthin inhibits the release of ${\beta}$-hexosaminidase and suppressed not only transcriptional activation of NF-${\kappa}B$, but also phosphorylation of ERK and JNK in IgE/DNP-BSA-treated RBL-2H3 cells. Fucoxanthin may be useful for preventing allergic diseases, including asthma and atopic dermatitis.

Hemocyte-specific Promoter for the Development of Transgenic Silkworm, Bombyx mori

  • Park, Seung-Won;Goo, Tae-Won;Kim, Seong-Ryul;Choi, Gwang-Ho
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.25 no.1
    • /
    • pp.111-114
    • /
    • 2012
  • In previous studies we have shown that a sw17255 gene was expressed in hemocyte-specific tissues of the silkworm, Bombyx mori L. (Lepidoptera: Bombycidae). It was verified that the sw17255 core promoter region contains elements that regulate the expression of this gene in hemocyte tissue; the selected promoter region spans nucleotides -1 to -2,112 upstream of the start codon. Each of the luciferase reporter gene expression vectors under the control of 4 different kinds of promoter candidates, (-2,112/-1), (-1,640/-1), (-1,169/-1) and (-579/-1), and the control reporter plasmid DNA, were introduced into B. mori larval coelom by direct injection using a syringe. The promoter candidate [E] (-579/-1) showed more than 1.67 fold transcriptional activity compared to control promoter activity. Higher productivity of an expressed gene in the transgenic silkworm by this promoter combination could be achieved in the near future. The foreign recombinant protein could be easily harvested from the blood of the transgenic silkworm.

Stearoyl-CoA desaturase induces lipogenic gene expression in prostate cancer cells and inhibits ceramide-induced cell death

  • Kim, Seung-Jin;Kim, Eung-Seok
    • Animal cells and systems
    • /
    • v.15 no.1
    • /
    • pp.1-8
    • /
    • 2011
  • Perturbation of metabolism with increased expression of lipogenic enzymes is a common characteristic of human cancers, including prostate cancer. In the present work the overexpression of stearoyl-CoA desaturase (SCD) in LNCaP cells led to increased mRNA levels of fatty acid synthase (FAS) and acetyl-CoA-carboxylase-a, whereas micro RNA-mediated silencing of SCD inhibited the expression of these lipogenic genes in LNCaP cells. Treatment with the FAS-specific inhibitor cerulenin inhibited SCD induction of LNCaP cell proliferation. In addition, a transient transfection assay revealed the capability of cerulenin to suppress SCD and dihydrotestosterone induction of androgen receptor transcriptional activity. Furthermore, overexpression of SCD in LNCaP cells produced marked resistance to ceramide-induced cell death with reduced poly(ADP-ribose) polymerase (PARP) cleavage. In contrast, silencing of SCD expression increased Bax protein in LNCaP cells. Furthermore, addition of ceramide to SCD knockdown LNCaP cells increased cell death and caspase-3 activity with drastic increase of PARP cleavage. Together, the data indicate that SCD may provide resistance of prostate cancer cells to ceramide-induced cell death.

CheY-OmpR Hybrid Protein Acting on the Osmoregulatory System (CheY-OmpR 혼성 단백질의 삼투조절효과)

  • 고민수;박찬규
    • Korean Journal of Microbiology
    • /
    • v.33 no.2
    • /
    • pp.118-124
    • /
    • 1997
  • In the previous study(6), we constructed the CheY-OmpR hybrid, Chp, which affects the expressions of ompF and om pC genes. Here we further characterize these effects and present the regulatory mechanism based on in vivo and in vitro data. Although Chp retained the sequence-specific DNA-binding ability, it was not possible to enhance transcriptional activity, suggesting that it may act as a competitive inhibitor to OmpR. The DNA-binding affinity of Chp was not modulated by phosphorylation of its Che Y portion. Chp was able to increase ompR transcription. FurthemlOre, it was found that the wild-type OmpR also exerts the same effect, which is also eOlltrolled by changes in medium osmolarity and in EnvZ activity.

  • PDF