• 제목/요약/키워드: Transcription inhibition

Search Result 587, Processing Time 0.03 seconds

STAT3 and SHP-1: Toward Effective Management of Gastric Cancer

  • Moon Kyung Joo
    • Journal of Digestive Cancer Research
    • /
    • v.6 no.1
    • /
    • pp.6-10
    • /
    • 2018
  • The importance of signal transducer and activator of transcription 3 (STAT3) signaling in gastric carcinogenesis was firmly evaluated in the previous studies. Fully activated STAT3 induces various target genes involving tumor invasion and epithelial-mesenchymal transition (EMT), and mediates interaction between cancer cells and microenvironmental immune cells. Thus, suppression of STAT3 activity is an important issue for inhibition of gastric carcinogenesis and invasion. Unfortunately, data from clinical studies of direct inhibitor targeting STAT3 have been disappointing. SH2-containing protein tyrosine phosphatase 1 (SHP-1) effectively dephosphorylates and inhibits STAT3 activity, which has not been extensively studied gastric cancer research field. However, by summarizing recent data, it is evident that protein and gene expression of SHP-1 are minimal in gastric cancer cells, and induction of SHP-1 effectively downregulates phosphorylated STAT3 and inhibits cellular invasion in gastric cancer cells. Several SHP-1 inducers have been investigated in the experimental studies, including proton pump inhibitor, arsenic trioxide, and other natural compounds. Taken together, we suggest that modulation of SHP-1/STAT3 signaling axis may present a new way for treatment of gastric cancer, and development of effective SHP-1 inducer may be an important task in the future search field of gastric cancer.

  • PDF

Inhibition of Seed Germination and Induction of Systemic Disease Resistance by Pseudomonas chlororaphis O6 Requires Phenazine Production Regulated by the Global Regulator, GacS

  • Kang, Beom-Ryong;Han, Song-Hee;Zdor, Rob E.;Anderson, Anne J.;Spencer, Matt;Yang, Kwang-Yeol;Kim, Yong-Hwan;Lee, Myung-Chul;Cho, Baik-Ho;Kim, Young-Cheol
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.4
    • /
    • pp.586-593
    • /
    • 2007
  • Seed coating by a phenazine-producing bacterium, Pseudomonas chlororaphis O6, induced dose-dependent inhibition of germination in wheat and barley seeds, but did not inhibit germination of rice or cucumber seeds. In wheat seedlings grown from inoculated seeds, phenazine production levels near the seed were higher than in the roots. Deletion of the gacS gene reduced transcription from the genes required for phenazine synthesis, the regulatory phzI gene and the biosynthetic phzA gene. The inhibition of seed germination and the induction of systemic disease resistance against a bacterial soft-rot pathogen, Erwinia carotovora subsp. carotovora, were impaired in the gacS and phzA mutants of P chlororaphis O6. Culture filtrates of the gacS and phzA mutants of P. chlororaphis O6 did not inhibit seed germination of wheat, whereas that of the wild-type was inhibitory. Our results showed that the production of phenazines by P. chlororaphis O6 was correlated with reduced germination of barley and wheat seeds, and the level of systemic resistance in tobacco against E. carotovora.

Ginsenoside Re prevents 3-methyladenine-induced catagen phase acceleration by regulating Wnt/β-catenin signaling in human dermal papilla cells

  • Gyusang Jeong;Seung Hyun Shin;Su Na Kim;Yongjoo Na;Byung Cheol Park;Jeong Hun Cho;Won-Seok Park;Hyoung-June Kim
    • Journal of Ginseng Research
    • /
    • v.47 no.3
    • /
    • pp.440-447
    • /
    • 2023
  • Background: The human hair follicle undergoes cyclic phases-anagen, catagen, and telogen-throughout its lifetime. This cyclic transition has been studied as a target for treating hair loss. Recently, correlation between the inhibition of autophagy and acceleration of the catagen phase in human hair follicles was investigated. However, the role of autophagy in human dermal papilla cells (hDPCs), which is involved in the development and growth of hair follicles, is not known. We hypothesized that acceleration of hair catagen phase upon inhibition of autophagy is due to the downregulation of Wnt/β-catenin signaling in hDPCs, and that components of Panax ginseng extract can increase the autophagic flux in hDPCs. Methods: We generated an autophagy-inhibited condition using 3-methyladenine (3-MA), a specific autophagy inhibitor, and investigated the regulation of Wnt/β-catenin signaling using the luciferase reporter assay, qRT-PCR, and western blot analysis. In addition, cells were cotreated with ginsenoside Re and 3-MA and their roles in inhibiting autophagosome formation were investigated. Results: We found that the unstimulated anagen phase dermal papilla region expressed the autophagy marker, LC3. Transcription of Wnt-related genes and nuclear translocation of β-catenin were reduced after treatment of hDPCs with 3-MA. In addition, treatment with the combination of ginsenoside Re and 3-MA changed the Wnt activity and hair cycle by restoring autophagy. Conclusions: Our results suggest that autophagy inhibition in hDPCs accelerates the catagen phase by downregulating Wnt/β-catenin signaling. Furthermore, ginsenoside Re, which increased autophagy in hDPCs, could be useful for reducing hair loss caused by abnormal inhibition of autophagy.

Modulated Gene Expression of Toxoplasma gondii Infected Retinal Pigment Epithelial Cell Line (ARPE-19) via PI3K/Akt or mTOR Signal Pathway

  • Zhou, Wei;Quan, Juan-Hua;Gao, Fei-Fei;Ismail, Hassan Ahmed Hassan Ahmed;Lee, Young-Ha;Cha, Guang-Ho
    • Parasites, Hosts and Diseases
    • /
    • v.56 no.2
    • /
    • pp.135-145
    • /
    • 2018
  • Due to the critical location and physiological activities of the retinal pigment epithelial (RPE) cell, it is constantly subjected to contact with various infectious agents and inflammatory mediators. However, little is known about the signaling events in RPE involved in Toxoplasma gondii infection and development. The aim of the study is to screen the host mRNA transcriptional change of 3 inflammation-related gene categories, PI3K/Akt pathway regulatory components, blood vessel development factors and ROS regulators, to prove that PI3K/Akt or mTOR signaling pathway play an essential role in regulating the selected inflammation-related genes. The selected genes include PH domain and leucine- rich-repeat protein phosphatases (PHLPP), casein kinase2 (CK2), vascular endothelial growth factor (VEGF), pigment epithelium-derived factor (PEDF), glutamate-cysteine ligase (GCL), glutathione S-transferase (GST), and NAD(P)H: quinone oxidoreductase (NQO1). Using reverse transcription polymerase chain reaction (RT-PCR) and quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR), we found that T. gondii up-regulates PHLPP2, $CK2{\beta}$, VEGF, GCL, GST and NQO1 gene expression levels, but down-regulates PHLPP1 and PEDF mRNA transcription levels. PI3K inhibition and mTOR inhibition by specific inhibitors showed that most of these host gene expression patterns were due to activation of PI3K/Akt or mTOR pathways with some exceptional cases. Taken together, our results reveal a new molecular mechanism of these gene expression change dependent on PI3K/Akt or mTOR pathways and highlight more systematical insight of how an intracellular T. gondii can manipulate host genes to avoid host defense.

Ethanol Extracts of Citrus Peel Inhibits Adipogenesis through AMPK Signaling Pathway in 3T3-L1 Preadipocytes (진피 에탄올 추출물의 AMPK signaling pathway를 통한 3T3-L1 지방전구세포의 adipogenesis 억제에 관한 연구)

  • Jo, Hyun Kyun;Han, Min Ho;Hong, Su Hyun;Choi, Yung Hyun;Park, Cheol
    • Journal of Life Science
    • /
    • v.25 no.3
    • /
    • pp.285-292
    • /
    • 2015
  • Citrus peel (CP) is used as a traditional herb with diverse beneficial pharmacological activities, such as anti-inflammatory, anti-oxidant, and anti-allergic effects. However, the anti-obesity effects of citrus peel are poorly defined. The aim of this study was to evaluate ethanol extracts of citrus peel (EECP) for its adipocyte differentiation and adipogenesis in 3T3-L1 preadipocytes. The aim of this study was to evaluate an EECP for its adipocyte differentiation and adipogenesis in 3T3-L1 preadipocytes. Treatment with EECP significantly suppressed the terminal differentiation of 3T3-L1 preadipocytes in a dose-dependent manner, as confirmed by a decrease in lipid droplet number and lipid content and an accumulation of cellular triglyceride. EECP exhibited potential adipogenesis inhibition and downregulated the expression of pro-adipogenic transcription factors, such as sterol regulatory elementbinding protein-1c (SREBP-1c), peroxisome proliferator-activated receptor-γ (PPARγ), CCAAT/enhancerbinding proteins α (C/EBPα) and C/EBPβ, and adipocyte expressed genes, such as adipocyte fatty acid binding protein (aP2) and Leptin. In addition, EECP treatment effectively activated the AMP-activated protein kinase (AMPK) signaling pathway; however, compound C, a specific inhibitor of AMPK, significantly reduced the EECP-induced inhibition of adipogenesis. Taken together, these results indicate EECP showed strong anti-obesity effects through the AMPK signaling pathway, and further studies will be needed to identify the active compounds that confer the anti-obesity activity of EECP.

Label-free Detection of the Transcription Initiation Factor Assembly and Specific Inhibition by Aptamers

  • Ren, Shuo;Jiang, Yuanyuan;Yoon, Hye Rim;Hong, Sun Woo;Shin, Donghyuk;Lee, Sangho;Lee, Dong-Ki;Jin, Moonsoo M.;Min, Irene M.;Kim, Soyoun
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.5
    • /
    • pp.1279-1284
    • /
    • 2014
  • The binding of TATA-binding protein (TBP) to the TATA-box containing promoter region is aided by many other transcriptional factors including TFIIA and TFIIB. The mechanistic insight into the assembly of RNA polymerase II preinitation complex (PIC) has been gained by either directly altering a function of target protein or perturbing molecular interactions using drugs, RNAi, or aptamers. Aptamers have been found particularly useful for studying a role of a subset of PIC on transcription for their ability to inhibit specific molecular interactions. One major hurdle to the wide use of aptamers as specific inhibitors arises from the difficulty with traditional assays to validate and determine specificity, affinity, and binding epitopes for aptamers against targets. Here, using a technique called the bio-layer interferometry (BLI) designed for a label-free, real-time, and multiplexed detection of molecular interactions, we studied the assembly of a subset of PIC, TBP binding to TATA DNA, and two distinct classes of aptamers against TPB in regard to their ability to inhibit TBP binding to TFIIA or TATA DNA. Using BLI, we measured not only equilibrium binding constants ($K_D$), which were overall in close agreement with those obtained by electrophoretic mobility shift assay, but also kinetic constants of binding ($k_{on}$ and $k_{off}$), differentiating aptamers of comparable KDs by their difference in binding kinetics. The assay developed in this study can readily be adopted for high throughput validation of candidate aptamers for specificity, affinity, and epitopes, providing both equilibrium and kinetic information for aptamer interaction with targets.

Histone deacetylases inhibitor and RAD51 recombinase increase transcription activator-like effector nucleases-mediated homologous recombination on the bovine β-casein gene locus

  • Park, Da Som;Kim, Se Eun;Koo, Deog-Bon;Kang, Man-Jong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.6
    • /
    • pp.1023-1033
    • /
    • 2020
  • Objective: The efficiency of the knock-in process is very important to successful gene editing in domestic animals. Recently, it was reported that transient loosening of the nucleosomal folding of transcriptionally inactive chromatin might have the potential to enhance homologous recombination efficiency. The objective of this study was to determine whether histone deacetylases (HDAC) inhibitor and RAD51 recombinase (RAD51) expression were associated with increased knock-in efficiency on the β-casein (bCSN2) gene locus in mammary alveolar-large T antigen (MAC-T) cells using the transcription activator-like effector nucleases (TALEN) system. Methods: MAC-T cells were treated with HDAC inhibitors, valproic acid, trichostatin A, or sodium butyrate for 24 h, then transfected with a knock-in vector, RAD51 expression vector and TALEN to target the bCSN2 gene. After 3 days of transfection, the knock-in efficiency was confirmed by polymerase chain reaction and DNA sequencing of the target site. Results: The level of HDAC 2 protein in MAC-T cells was decreased by treatment with HDAC inhibitors. The knock-in efficiency in MAC-T cells treated with HDAC inhibitors was higher than in cells not treated with inhibitors. However, the length of the homologous arm of the knock-in vector made no difference in the knock-in efficiency. Furthermore, DNA sequencing confirmed that the precision of the knock-in was more efficient in MAC-T cells treated with sodium butyrate. Conclusion: These results indicate that chromatin modification by HDAC inhibition and RAD51 expression enhanced the homologous recombination efficiency on the bCSN2 gene locus in MAC-T cells.

Modulation of the Tendency Towards Inclusion Body Formation of Recombinant Protein by the Addition of Glucose in the araBAD Promoter System of Escherichia coli

  • Lee, You-Jin;Jung, Kyung-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.11
    • /
    • pp.1898-1903
    • /
    • 2007
  • We attempted to modulate the overall protein expression rate through the addition of a repressor against the araBAD promoter system of Escherichia coli, in which glucose was used as a repressor. Therefore, 0.5% L-arabinose was initially contained as an inducer in culture medium, and either 2% glucose or 2% glycerol was used as a carbon source, and it was found that the expression of recombinant interferon-${\alpha}$ could be observed at the beginning of the batch culture when glycerol was used as a carbon source. However, when glucose was used, the initiation of recombinant interferon-${\alpha}$ expression was delayed compared with that when glycerol was used. Furthermore, when the addition of 0.5% glucose was carried out once or twice after 0.5% L-arabinose induction during DO-stat fed-batch culture, the distributions of soluble and insoluble recombinant interferon-${\alpha}$ were modulated. When glucose was not added after the induction of L-arabinose, all of the expressed recombinant interferon-${\alpha}$ formed an inclusion body during the later half of culturing. However, when glucose was added after induction, the expressed recombinant interferon-${\alpha}$ did not all form an inclusion body, and about half of the total recombinant interferon-${\alpha}$ was expressed in a soluble form. It was deduced that the addition of glucose after the induction of L-arabinose might lower the cAMP level, and thus, CAP (catabolite activator protein) might not be activated. The transcription rate of recombinant interferon-${\alpha}$ in the araBAD promoter system might be delayed by the partial repression. This inhibition of the transcription rate probably resulted in more soluble interferon-${\alpha}$ expression caused by the reduction of the protein synthesis rate.

Comparison of Anti-Adipogenesis Activity by Several Grape Extracts (포도 추출물로부터 C/EBP 전사인자 활성 비교)

  • Lee, Si-Rim;Park, Chul-Hong;Kuan, Eun-Young;Lu, Yan-Qing;Kim, Hong;Kim, Ki-Chan;Son, Hyeong-U;Lee, Hyun-Jin;Heo, Jin-Chul;Lee, Sang-Han
    • Food Science and Preservation
    • /
    • v.18 no.1
    • /
    • pp.119-123
    • /
    • 2011
  • In order to compare what kinds of transcription factors are associated with the inhibition of preadipocyte cell proliferation, we prepared several grape extracts and tested the expression patterns by reverse transcription-polymerase chain reaction. As a result, 50% ethanol extract of Campbell early seed inhibited adipogenesis derived from the MDI solution. Extract of Campbell early seed was significantly inhibited lipid droplet formation and expression of molecular factors C/EBP-alpha and delta in 3T3-L1 cells. It is suggested that grape extracts of fractions would be a good candidate for the development of regional skin fat modulator.

Anti-Cancer Activity of the Flower Bud of Sophora japonica L. through Upregulating Activating Transcription Factor 3 in Human Colorectal Cancer Cells

  • Lee, Jin Wook;Park, Gwang Hun;Eo, Hyun Ji;Song, Hun Min;Kim, Mi Kyoung;Kwon, Min Ji;Koo, Jin Suk;Lee, Jeong Rak;Lee, Man Hyo;Jeong, Jin Boo
    • Korean Journal of Plant Resources
    • /
    • v.28 no.3
    • /
    • pp.297-304
    • /
    • 2015
  • The flower buds of Sophora japonica L (SF), as a well-known traditional Chinese medicinal herb, have been used to treat bleeding-related disorders such as hematochezia, hemorrhoidal bleeding, dysfunctional uterine bleeding, and diarrhea. However, no specific anti-cancer effect and its molecular mechanism of SF have been described. Thus, we performed in vitro study to investigate if treatment of SF affects activating transcription factor 3 (ATF3) expression and ATF3-mediated apoptosis in human colorectal cancer cells. The effects of SF on cell viability and apoptosis were measured by MTT assay and Western blot analysis against cleaved poly (ADP-ribose) polymerase (PARP). ATF3 activation induced by SF was evaluated using Western blot analysis, RT-PCR and ATF3 promoter assay. SF treatment caused decrease of cell viability and increase of apoptosis in a dose-dependent manner in HCT116 and SW480 cells. Exposure of SF activated the levels of ATF3 protein and mRNA via transcriptional regulation in HCT116 and SW480 cells. Inhibition of extracellular signal-regulated kinases (ERK) 1/2 by PD98059 and p38 by SB203580 attenuated SF-induced ATF3 expression and transcriptional activation. Ectopic ATF3 overexpression accelerated SF-induced cleavage of PARP. These findings suggest that SF-mediated apoptosis may be the result of ATF3 expression through ERK1/2 and p38-mediated transcriptional activation.